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1 OVERVIEW 

1.1 About this Manual 

The automotive industry is becoming smarter and more electric, and as a result MCU controller 

applications in automotive electronics systems are also becoming more ubiquitous. MCUs based on 

Arm architectures are now widely used in automotive controllers. At the same time, MCUs based on 

the TriCore architecture also account for a significant percentage of the automotive controller market. 

Considerations such as demand, cost, development efficiency, and risk management have resulted in 

multi-architectural development and applications being on the rise in many practical use cases. 

Furthermore, increased chip performance has also come with more complex core architectures, 

upgraded instruction sets, and more numerous multi-core architecture applications. In other words, 

chips are becoming more complex, and this has resulted in more requirements during workload 

migration between different CPU architectures. The purpose of this manual is to compare and contrast 

the TriCore and Arm architectures while analyzing, from a software porting perspective, the elements 

that should be considered when porting software developed for the TriCore architecture to the Arm 

architecture.  

This manual discusses porting from the TriCore architecture to the Arm architecture from two main 

aspects:  

➢ The first aspect is the differences between the TriCore and Arm architectures, which are 

explored primarily from the perspectives of CPU architecture and functional safety.  

➢ The second aspect is software development and porting, describing in detail the methods for 

porting software development for the TriCore architecture to the Arm architecture, as well as 

analyzing the porting process based on the AUTOSAR architecture.  

1.2 CPU Architecture 

1.2.1 Arm Architecture 

In the automotive MCU controller field, the Arm architecture is a 32-bit CPU architecture. The 

Arm architecture is widely used in embedded system designs. It has low power consumption and is 

suitable for mobile communications and consumer electronics, such as mobile phones, multimedia 

players, handheld gaming devices, computers, and computer peripherals. It is also applicable to the 

industrial, automotive, and aerospace fields. 

 

Arm CPUs cores are divided into three series: Cortex-A, Cortex-R, and Cortex-M. 

➢ Cortex-A series 

The Cortex-A series of application processors includes the Cortex-A7, Cortex-A8, Cortex-

A9, Cortex-A15, Cortex-A5x, Cortex-A7x, and Cortex-A71x processors, which are based on 

the ARMv7-A, ARMv8-A, and ARMv9-A architectures. This series provides solutions for 

devices running complex operating systems (such as Linux, Android, and iOS). The Cortex-

A series is widely applicable to a variety of use cases, ranging from low-cost handheld devices 

to smartphones, tablets, set-top boxes, and enterprise network equipment. It is capable of 

processing massive amounts of data and high-performance computing. This type of processor 

generally runs at very high clock speeds (generally over 1GHz). It supports memory 

management units (MMUs) required by Linux, Android, Windows, and mobile operating 

systems. 

➢ Cortex-R series 

The Cortex-R series of real-time processors includes the Cortex-R4, Cortex-R5, Cortex-R7, 

Cortex-R8, and Cortex-R52 processors, which are based on the ARMv7-R and ARMv8-R 

https://so.csdn.net/so/search?q=%E7%BD%91%E7%BB%9C%E8%AE%BE%E5%A4%87&spm=1001.2101.3001.7020
https://so.csdn.net/so/search?q=Linux&spm=1001.2101.3001.7020
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architectures. As real-time microcontroller cores, the Cortex-R series is specifically designed 

for embedded systems that require high safety and performance. It provides fast and 

deterministic response times, making it an ideal choice for applications that have high 

requirements for real-time responses and safety, such as automotive, industrial, and aerospace 

systems. Although real-time processors cannot run complete versions of the Linux and 

Windows operating systems (apart from the Cortex-R82), they are capable of supporting large 

number of real-time operating systems (RTOS). 

➢ Cortex-M series 

The Cortex-M series of microcontroller processors include the Cortex-M0, Cortex-M0+, 

Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M33, Cortex-M52, Cortex-M55 and Cortex-

M85 processors, which are based on the ARMv6-M, ARMv7-M, ARMv8-M, and ARMv8.1-

M architectures. The Cortex-M series processors feature cores that have low power 

consumption, high performance, and scalability, and include numerous features that make 

them suitable for embedded systems. They are designed to be easy to use, which is why they 

have been highly successful in the microcontroller, IoT, and embedded systems markets. The 

Cortex-M series is widely used in applications ranging from consumer electronics to industrial 

control systems, including the microcontroller market, IoT, embedded systems, and 

automotive controllers. 

 

This manual uses the ARMv7-M architecture as the target architecture for porting. The ARMv7-

M architecture includes the Cortex-M3, Cortex-M4, and Cortex-M7 processor architectures. Unless 

otherwise specified, the content of this manual will use the ARMv7-M architecture for reference. 

 

1.2.2 TriCore Architecture 

The TriCore architecture is a core architecture for the AURIX family of architectures released by 

Infineon. The AURIX TriCore architecture unites a RISC processor core, a microcontroller, and a 

digital signal processor (DSP) in a single MCU. Controller products based on the TriCore architecture 

are widely used in the automotive industry, including in applications such as powertrains, body control, 

safety applications, and advanced driver assistance systems (ADAS). They are driving the automotive 

industry toward greater automation, electrification, and connectivity. Currently, Infineon has launched 

AURIX 1G and AURIX 2G products, which are the TC2xx series and TC3xx series, respectively. 

➢ AURIX 1G TC2xx series 

 

https://link.zhihu.com/?target=https%3A//www.infineon.com/cms/cn/product/microcontroller/32-bit-tricore-microcontroller/
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Figure 1.2.2-1 TC2xx chip series 

The AURIX™ TC2XX series processors are based on single-core and multi-core 32-bit 

TriCore™ architecture. It can meet the highest safety requirements while also providing high-

level performance. The AURIX™ architecture is used in automotive powertrains, including 

electric and hybrid vehicles, as well as safety systems such as steering, braking, airbags, and 

ADAS. The core architecture of the AURIX™ TC2xx series uses the TriCore TC1.6P and 

TC1.6E architectures. The TriCore TC1.6P core features a high-performance system 

architecture, capable of reaching a maximum clock speed of 300MHz. The TC1.6E core 

features a system architecture that has high performance and low power consumption. It can 

reach a maximum clock speed of 200MHz. 

 

➢ AURIX 2G TC3xx series 

 
Figure 1.2.2-2 TC3xx chip series 

The architectures of the AURIX™-TC3xx series feature both high performance and high 

safety. It can have up to six cores and is suitable for next generation applications that fuse 

self-driving domain controllers and data. AURIX™ TC3xx microcontrollers are applicable to 

safety-related use cases, such as airbags, braking and power steering systems, radar, lidar, and 

camera sensors and systems. The AURIX™ TC3xx uses the TriCore TC1.6.2P core 

architecture. The TriCore TC1.6.2P architecture is similar to the TC1.6P architecture, but 

features better memory access performance and memory protection. 

 

This manual uses the AURIX TriCore TC1.6P architecture as the porting architecture. The 

AURIX TriCore TC1.6P architecture supports the TC2xx and TC3xx series. Unless otherwise specified, 

the content of this manual will use the TriCore TC1.6P architecture for reference. 

 

1.3 ARMv7-M Architecture 

The Cortex-M processors include the ARMv6-M, ARMv7-M, ARMv8-M and ARMv8.1-M 

architectures. The Cortex-M0 and Cortex-M0+ are based on the ARMv6-M architecture, the Cortex-

M3, M4, and M7 are based on the ARMv7-M architecture, and the Cortex-M23, Cortex-M33, Cortex-

M52, Cortex-M55 and Cortex-M85 are based on the ARMv8-M architecture. The ARMv7-M 

architecture shares many similarities with previous Arm architectures, and it has been specially 

designed to support deeply embedded and lower cost real-time microcontrollers. By removing many 

features of the old architectures while adding new ones, a program design model that is more similar 

to a microcontroller has been created. For example, the number of operating modes has been greatly 

reduced from seven or more to two: Handler mode and Thread mode. Furthermore, the ARMv7-M 



 

Porting from the TriCore Architecture to the Arm Architecture
 5/35 www.shzckj.cn 

architecture only supports Thumb instruction sets and features a brand-new system-level programming 

model. 

The key features of the ARMv7-M architecture are as follows: 

➢ Power, performance, and footprint constraints that are the most stringent in the industry 

Straightforward pipeline design delivers industry-leading system performance in a wide range 

of markets and applications 

➢ Highly deterministic operations 

Supports single or low cycle count execution 

Minimal interrupt latency and shorter pipeline design 

Can perform cacheless operations 

➢ Excellent support for C/C++ applications and maintains consistency with Arm's programming 

standards in this field 

Exception handling routines are standard C/C++ functions that use standard calling 

conventions 

➢ Designed specifically for deep embedded systems 

Supports devices with lower pin counts 

➢ Supports debugging and software analysis, as well as event-driven systems 

1.4 TC1.6P Architecture 

The TriCore architecture is the first unified single-core 32-bit microcontroller DSP architecture 

that is optimized for real-time systems. The TriCore instruction set architecture (ISA) combines the 

real-time capabilities of microcontrollers, the computational power of DSPs, and the cost-effectiveness 

of RISC's load-store architecture into a compact and programmable core. 

 

Figure 1.4-1 TriCore Architecture 

The ISA supports a unified 32-bit address space, optional virtual addressing, and memory-mapped 

input/output. The ISA simultaneously supports 16-bit and 32-bit instruction formats. All instructions 

have a 32-bit format, of which 16-bit instructions are a subset. 16-bit instructions are selected because 

of their usage frequency. These instructions greatly reduce code space, thereby lowering memory 

requirements and system and power consumption. 

Real-time responsiveness is mainly dependent on interrupt latency and context switching time. 

High-performance architectures minimize interrupt latency by avoiding long multi-cycle instructions 

and providing flexible hardware support for interrupts. The TriCore architecture also supports fast 

context switching. 
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2 COMPARISON OF CORE ARCHITECTURE 

This manual analyzes the differences between the Arm and TriCore architectures in the following 

aspects to more clearly establish the differences: 

➢ Programmer’s model 

The differences in the programmer’s models for the two architectures are explored by 

introducing the features of the chips from a developer’s perspective. The analysis is mainly 

based on their data type formats, modes of operation, and other aspects. 

➢ Instruction set 

The differences in the instruction sets of the two architectures are explored. 

➢ General Purpose Registers 

The differences in the general-purpose registers (GPRs) of the two architectures are explored. 

➢ Exceptions and interrupts 

The interrupts and exceptions used in the two architectures are explored, including their 

interrupt priorities, interrupt and exception handling methods, and the differences between 

their interrupt and exception vector tables. 

➢ Memory 

The memory models of the two architectures are explored, including address space, 

addressing method, caches, etc. 

➢ Floating Point Unit 

Both TriCore and Arm support floating point computing, and the differences in floating point 

computing between the two are explored. 

➢ Debug 

The differences between the debug systems of the two architectures are explored. 

2.1 Programmer’s Model 
The programmer’s model is the interface that developers use during chip development. Developers 

must ensure they are familiar with the programmer’s model to increase development efficiency. This 

chapter introduces the differences between the two architectures through the data types supported by 

the chips, the byte orders, and the modes of operation. 

2.1.1 Data Type 

The data types supported by the TriCore architecture include: Boolean, bit string, byte, signed 

fraction, address, signed and unsigned integers, IEEE-754 single-precision floating-point number. 

The data types supported by the Arm architecture include: byte, halfword, word, 32-bit pointers, 

unsigned or signed 32-bit integers, unsigned 16-bit or 8-bit integers, signed 16-bit or 8-bit integers, 

unsigned or signed 64-bit integers. 

Developers using the C language must pay close attention to the data types of the compiler, as the 

compiler is responsible for translating the defined data types into the target file data types supported by 

the hardware. This manual takes the commonly-used HighTec compiler for TriCore and the commonly-

used Arm Compiler for Arm as examples to perform a comparative analysis. 
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Type Hightec (Tricore) Arm Compiler (Arm) 

char 8bit 8bit 

short 16bit 16bit 

int 32bit 32bit 

long 32bit 32bit 

long long 64bit 64bit 

float 32bit 32bit 

double 64bit 64bit 

long double 64bit 64bit 

pointer  32bit 32bit 

enum  8bit-32bit 8bit-32bit 

 

Porting tip: Both compilers use generic data types, so variables defined as specific data types can 

be directly used during porting. If other compilers are used during porting, the methods described here 

can still be used for comparative analysis. 

2.1.2 Byte Ordering and Alignment 

The TriCore and Arm architectures both use 4-byte alignment (word aligned) for address 

alignment. The data alignment methods of the two architectures are generally based on the size of the 

data. 

The data storage and CPU register data storage in the TriCore architecture both use the little-

endian format (where the least significant byte of data is stored at the low memory address), as shown 

in the following figure: 

 

Figure 2.1.2-1 TriCore Byte Ordering 

On the other hand, the Arm architecture can be configured to use either the little-endian format 

(where the least significant byte of data is stored at the lowest memory address) or the big-endian format 

(where the most significant byte of data is stored at the lowest memory address) for data storage. 

➢ Little-endian format of the Arm architecture 

Words (4 bytes) and half-words (2 bytes) of data are stored in memory as follows: 
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Figure 2.1.2-2 Little-endian format of the Arm architecture 

➢ Big-endian format of the Arm architecture 

Words (4 bytes) and half-words (2 bytes) of data are stored in memory as follows: 

 

Figure 2.1.2-3 Big-endian format of the Arm architecture 

Either big- and little-endian format can be selected for the byte order in the Arm architecture 

according to the control input during reset, the default is little-endian format. 

Porting tip: Developers must consider the data defined in the program during the porting process. 

In particular, the byte order needs to be taken into account when using variables defined with custom 

structures. During porting, if the Arm architecture uses the big-endian format, any structures that 

involve byte order must be changed to the big-endian format. 

2.1.3 Operating Modes 

The I/O privilege levels of the TriCore architecture are divided into 3 levels: User-0 mode, User-

1 mode, and Supervisor mode. 

I/O Privilege Level Description 

User-0 mode In this mode, tasks do not have access to external peripherals and cannot 

enable or disable interrupts. 

User-1 mode In this mode, tasks are used to access normal and unprotected peripherals, 

such as reading and writing to serial ports, accessing timers, and accessing 

the status registers of most I/O components. 

Supervisor mode In this mode, tasks can access the system register and peripherals, and can 

enable or disable interrupts. 

 

The Arm architecture has two operating modes: Handler mode and Thread mode. 

➢ Handler mode: Exception handling is performed in handler mode. In handler mode, the 

processor always has a privileged access level. 

➢ Thread mode: Normal application code is executed in thread mode. In thread mode, the 

processor can be in a privileged access level or an unprivileged access level. 
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Operating 

Mode 

Privilege Use Cases 

Handler Privileged Exception handling 

Thread Privileged In this mode, when executing a privileged process or thread, only 

privileged access is supported. 

Unprivileged In this mode, when executing an unprivileged process or thread, 

only unprivileged access is supported. Access to some resources 

will be restricted. 

 

Porting tip: During the porting process, the developer needs to consider the differences in privilege 

levels for resources between the two architectures, especially when porting operating systems. It is 

necessary to consider the restrictions of privileged access. The User mode/Supervisor mode processing 

method for TriCore needs to be changed to Handler/Thread. 

2.2 Instruction Set 
The instruction sets of the TriCore and Arm architectures both support 16-bit and 32-bit reduced 

instruction sets. 

The instruction sets of the TriCore architecture include: Arithmetic, address arithmetic, 

comparison, address comparison, logical, MAC, shift, coprocessor, bit logical, branch, bit field, 

load/store, packed data, system. 

Most TriCore architecture instruction sets can be completely executed within one machine cycle. 

The instruction sets of the Arm architecture are Thumb instruction sets based on Thumb-2, which 

are compatible with 16-bit and 32-bit instructions. Arm instruction sets include: Branch, Data-

processing, Status register access, load/store, Miscellaneous, Exception-generating, Coprocessor, 

Floating-point. 

A comparison of TriCore and Arm instruction sets is as follows: 

TriCore architecture instruction sets Arm architecture instruction sets 

mov d3, d1 MOV     R8, R7 

add d3, d1, d2 ADD R1, R1, R3 

j foobar B   label 

CMPSWAP.W e0, [a0+4] CMP     R6, R7    

 

Porting tip: Due to the significant differences between the two CPU architectures’ instruction sets, 

developers may need to rewrite assembly code used in a program during the porting process based on 

actual functionality of the program. 

2.3 General Purpose Registers 
The core registers of the TriCore architecture are divided into 2 types: General Purpose Registers 

(GPRs) and Core Special Function Registers (CSFRs). 
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➢  General Purpose Registers (GPRs) 

GPRs include 16 address general purpose registers A[0] to A[15] and 16 data general purpose 

registers D[0] to D[15]. 

 

Figure 2.3-1 TriCore GPRs 

The general-purpose registers A[10], A[11], A[15], and D[15] also have special functions: 

A[10]: Stack Pointer (SP) register 

A[11]: Return Address (RA) register 

A[15]: Implicit Address register 

D[15]: Implicit Data register 

 

➢  Core Special Function Registers (CSFRs) 

CSFRs include system registers, such as Program Counter (PC) registers, Program Status 

Word (PSW) registers, and Previous Context Information register (PCXI), which have key function 

in context switching for tasks. 

CSFRs also include Compatibility Mode Register (COMPAT), Access Control Registers, 

Interrupt Registers, Memory Protection Registers, Trap Registers, Memory Configuration 

Registers, Core Debug Controller Registers, and Floating Point Registers. 

 

The Arm architecture includes 16 registers, 13 of which are general purpose registers (R0 to R12), 

and 3 are special purpose registers. 

➢ General purpose registers 

R0 to R12 are general purpose registers. R0 to R7 are known as low registers. Due to space 

limitations, many 16-bit instructions can only access low registers. R8 to R12 are high registers 

and can be used for 32-bit and some 16-bit instructions. 

➢ Special purpose registers 

R13 is a Stack Pointer (SP) register, used as a pointer to stacks. 
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R14 is a Link Register (LR), used to save the return link when functions or subroutines are called. 

R15 is a Program Counter (PC). 

➢ Other special purpose registers 

Application Program Status Register (ASPR) and exception and interrupt registers: PRIMASK, 

FAULTMASK, BASEPRI, control registers, floating point registers, etc. 

Porting tip: During the porting process, developers must perform configuration according to the 

differences between the two architectures’ core registers. In the TriCore architecture, when exceptions 

are encountered, analysis must be performed based on the D[15] register, which stores the Trap 

Identification Number (TIN), and the A[11] register, which records the entry address of the trap. On 

the other hand, in the Arm architecture, It needs to be analyzed based on the exception, interrupt-related 

registers PRIMASK, FAULTMASK, and BASEPRI. For the Stack Pointer (SP) register in the TriCore 

architecture, the A[10] register should be read to confirm the stack location. In the Arm architecture, 

the R13 register should be read to confirm the stack location. 

2.4 Exceptions and Interrupts 
The interrupt system of the TriCore architecture supports multiple interrupt sources, including 

chip peripheral interrupt and external interrupt. An interrupt request can either be serviced by the CPU 

or the DMA. Each interrupt source is assigned a unique interrupt priority level. Traps in the TriCore 

structure occur as a result of events such as non-maskable interrupts (NMI), instruction exceptions, 

memory management exceptions, or illegal access. Traps are always active and cannot be masked by 

the software. 

The Arm architecture provides the Nested Vectored Interrupt Controller (NVIC) module for 

handling interrupts. The NVIC supports multiple interrupt requests, non-maskable interrupts (NMI), 

SysTick timer interrupts, and multiple system exceptions. 

This manual describes the differences between the two architectures through interrupt priority 

level, interrupt and exception handling, and interrupt and exception vector tables. 

2.4.1 Interrupt Priority Level 

Interrupt requests in the TriCore architecture are handled according to the priority level, and interrupt 

nesting is supported. The rules for interrupt priority are as follows: 

➢ High priority interrupts can interrupt low priority interrupts already running. 

➢ Interrupts cannot be interrupted by another interrupt of the same priority level. 

➢ The Interrupt Control Unit (ICU) determines which interrupt to handle according to the 

priority level. 

All service requests are assigned a Service Request Priority Number (SRPN). Each interrupt 

handling process has its own SRPN. Different interrupt service requests must be assigned different 

SRPNs. There are up to 255 interrupt priority levels, with the priority level number 0 being the lowest 

interrupt priority. Exceptions with the highest priority level cannot be masked by the software. 

The Arm architecture exception and interrupt handling is determined by the priority of the 

exception and the current priority of the processor. Interrupt nesting is supported. High priority 

interrupts can interrupt low priority interrupts already running. When two exceptions with the same 
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priority level are triggered, the exception with the lower interrupt ID number will be handled first. 

Some exceptions (RESET, NMI, and HardFault) have fixed priority levels. Their priority levels are 

negative, so they will have higher priority than other exceptions. The priority levels of other exceptions 

can be configured between a range of 0 to 255. The smaller the value, the higher the interrupt priority 

level. 

2.4.2 Interrupt and Exception Handling 

The TriCore architecture defines 8 types of traps. Each type of trap is identified by a Trap 

Identification Number (TIN). Before entering the trap service process, the TIN value is assigned to the 

D[15] register. Traps are divided into synchronization traps, asynchronous traps, hardware traps, 

software traps, and unrecoverable traps. 
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Figure 2.4.2-1 TriCore trap categories 

Arm architecture exceptions are divided into the following: 

➢ Reset: Reset, including power on and hot start 

➢ NMI: Non-maskable interrupt 

➢ Hard Fault: Can be triggered by all faults 

➢ MemManage Fault: Memory management error, memory protection unit (MPU) error, or 

unauthorized access 

➢ Bus Fault: Bus error, prefetch error, memory access error, or other address access error 

➢ Usage Fault: Usage error, such as executing undefined instructions or illegal state transitions  

➢ SVC: Supervisor call typically used for operating systems 

➢ Debug Monitor: Debug monitoring, in which breakpoints, watchpoints, and other debugging 

exceptions are monitored during software debugging 

➢ PendSV: Suspend service call, typically used by the operating system for context switching. 

➢ SysTick: An exception generated by the system timer, it can be used as a timer for OS 

environments 

➢ External Interrupt: Used for peripheral interrupts 

The Arm architecture provides several programmable registers for interrupt and exception 

management. These registers are mostly located in the NVIC and system control block (SCB). The 

Arm architecture also provides registers for interrupt masking, such as PRIMASK, FAULTMASK, and 

BASEPRI. Once the chip is reset, all interrupts will be in the disabled state, and the default priority 

level will be 0. Before using an interrupt, the priority level of the required interrupt needs to be 

configured, and the interrupt of the peripheral modules needs to be enabled, as well as the NVIC 

interrupt. 
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2.4.3 Interrupt and Trap Vector Tables 

There are 2 vector tables in the TriCore architecture, the interrupt vector table and the trap vector 

table. 

➢ Interrupt vector table 

The Base of Interrupt Vector Table Register (BIV) stores the base address of the interrupt vector 

table. Before the interrupt is enabled, the MTCR instruction can be used to modify the BIV register 

during system initialization. The interrupt vector table base address in the BIV register must be 

aligned to an even byte address (half-word address). 

When an interrupt is generated, the CPU will calculate the corresponding interrupt service function 

entry using the contents of the PIPN and BIV registers. There are two vector table spacings 

available. One is 32 bytes and the other is 8 bytes. The vector table spacing is determined by the 

VSS bit of the BIV register. The specific formula is as follows: 

if (BIV.VSS == 1’b0) 

ISR_Entry_PC = {BIV[31:1],1’b0} | {PIPN<<5}; 

Else 

ISR_Entry_PC = {BIV[31:1],1’b0} | {PIPN<<3}; 

 

Figure 2.4.3-1 TriCore interrupt vector table 

➢ Trap vector table 

The Base Trap Vector Table Pointer (BTV) stores the base address of the trap vector table. When 

a trap is generated, the entry address of a trap handling function is determined by left-shifting the 

Trap Class by 5 bits and performing an OR operation with the value of the BTV register. Left 

shifting the Trap Class by 5 bits will result in 32 byte spacing between the different trap handling 

function entries. Therefore, the BTV register value has to be at least 256 byte edge aligned. 
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Vector tables in the Arm architecture start from address 0 by default. The vector address is the 

exception number multiplied by 4. When the chip is enabled, the initial memory (flash or ROM) address 

(normally 0x00000000) will be used as the initial value of SP_main, and it cannot be changed during 

execution. However, in some usage scenarios, the vector table may need to be modified or relocated. 

Therefore, the Arm architecture includes the ability to relocate the vector table. The interrupt vector 

table relocate function is achieved through the use of the programmable register of the Vector Table 

Offset Register (VTOR). The interrupt vector table must be aligned to addresses that are powers of 2, 

with a minimum alignment requirement of 128 bytes. 

Porting tip: The interrupt and exception structures of the two architectures are not consistent. 

During porting, the Arm architecture interrupt and exception handling method must be completely 

followed. 

2.5 Memory 
Memory is used for the addressing space in a chip core. The data stored in the memory is used for 

logic processing in the chip core. The design of memory partitions can directly impact the performance 

of the core when it is processing tasks. This chapter will describe the differences between the two core 

architectures in terms of the memory address space, addressing mode, and cache. 

2.5.1 Memory Address Space 

Addresses in the TriCore architecture are 32 bits wide, which allows them an access range of up 

to 4GB. The address space is divided into the 16 segments [0H - FH]. Each segment is 256MB and can 

act as peripheral space, cache space, or non-cache space. 

The physical memory attributes of the [0H - 7H] memory segments depend on the specific 

implementation requirements. If MMU is enabled, the [0H - 7H] memory segments are treated as virtual 

addresses. They must be converted when they are accessed. If MMU is not used, the access 

characteristics will depend on the specific implementation requirements. Unauthorized access may lead 

to traps. 

The Scratch Pad RAM (SRAM) of the TriCore architecture supports program segments and data 

segments in the C segment (PSPR) and D segment (DSPR) respectively. In a multi-core architecture, 

each CPU's data memory (DSPR) and program memory (PSPR) access different memory regions by 

utilizing mirror image regions for DSPR and PSPR. These mirror image regions are distributed within 

the [0H - 7H] memory segments. 
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Figure 2.5.1-1 TriCore SRAM memory segments 

The [8H - DH] memory segments are used for defining non-volatile storage spaces and special 

storage regions such as program flash memory (PFLASH), data flash memory (DFLASH), chip 

firmware (BROM), and local memory (LMU). Furthermore, the [8H - 9H] memory segments allow 

cache access, but the [AH - DH] segments do not. 

The [EH - FH] memory segments are used to define the access region of peripherals. The memory 

regions for chip peripherals, such as the peripheral register, are allocated to these segments. 

The Arm architecture is similar to the TriCore architecture, both adopting 32-bit address widths 

and capable of accessing up to 4GB of addressing range. Unlike the TriCore Architecture, the Arm 

architecture divides the 4GB addressing space into 8 segments. The segments are each 0.5GB in size 

and used for the following storage functions: 

➢ Code 

➢ SRAM 

➢ Peripheral 

➢ Two RAM regions 

➢ Two Device regions 

➢ System 

A comparison of TriCore and Arm addressing spaces is as follows: 

Addressing Space Arm Architecture TriCore Architecture 

0x00000000-0x1FFFFFFF Code, used for Flash, ROM, and 

other non-volatile memory regions. 

Addressing space divided into 

DSPR for the CPU data 

memory and PSPR for the 

program memory. 

0x20000000-0x3FFFFFFF SRAM, used for the memory region 

in the chip. 

0x40000000-0x5FFFFFFF Peripheral, used for the addressing 

region for chip peripherals, such as 

the peripheral register addressing 

region. 
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0x60000000-0x7FFFFFFF Two RAM regions, used for the 

internal RAM region addressing of 

chip peripherals. The write-back 

(WB) method is used as the cache 

strategy for this addressing region. 

0x80000000-0x9FFFFFFF Two RAM regions, used for the 

internal RAM region addressing of 

chip peripherals. The write-through 

(WT) method is used as the cache 

strategy for this addressing region. 

PFLASH, DFLASH, BROM, 

and LMU, cache access is 

allowed. 

0xA0000000-

0xBFFFFFFF 

Two Device regions, used for the 

shared device regions. 

PFLASH, DFLASH, and 

BROM, cache access is not 

allowed. 

0xC0000000-

0xDFFFFFFF 

Two Device regions, used for the 

non-shared device regions. 

Scratch Pad RAM (SRAM), 

supports program and data 

segments. 

0xE0000000-

0xFFFFFFFF 

System, used for the Private 

Peripheral Bus (PPB) addressing 

range and supplier-defined memory 

addressing. 

Access regions of peripherals 

and the peripheral memory 

regions of the chip, such as the 

peripheral registers. 

 

 Porting tip: The addressing spaces of the two architectures are different, therefore it is necessary 

to consider the data and program storage spaces when porting. In the Arm architecture, data segments 

need to be stored in the SRAM, while program segments and constant data segments need to be stored 

in Code when compiling links. 

2.5.2 Addressing Modes 

The TriCore addressing mode accesses memory data through the load and store commands. The 

length of the accessed data can 8 bits, 16 bits, 32 bits, or 64 bits. The TriCore architecture supports 

seven addressing modes:  

Addressing Mode Description 

Absolute Addressing Generally used for peripheral registers and global data access. Absolute 

addressing uses the 18-bit constant defined by the command as the 

memory address. The complete 32-bit address is formed by taking the 

upper 4 bits of the 18-bit constant and placing them in the upper 4 bits of 

the 32-bit address, while filling the remaining empty positions with 0. 

Base + Short Offset The effective address in this addressing mode is the sum of the base 

address register and a 10-bit offset of the sign extended bit. 

Base + Long Offset In contrast to Base + Short Offset, the offset is a 16-bit sign-extended 

value, and any location in the memory can be addressed using a two-

instruction sequence. 
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Pre-increment Commonly used for stack push operations, it utilizes the sum of an 

address register and an offset as the effective address and then writes the 

result back to the address register. 

Post-increment This addressing mode is typically used for stack data pop (pop from stack) 

operations. It uses the value in an address register as the effective address, 

then adds the sign-extended 10-bit offset to the previous value, and finally 

updates the address register. 

Circular Typically used to access data values in a circular buffer when performing 

filtering calculations. 

Bit-reverse Used for Fast Fourier Transform (FFT) algorithm calculations. 

 

The 8 types of addressing modes in the Arm architecture include: 

➢ Register addressing 

➢ Immediate addressing 

➢ Register offset addressing 

➢ Register indirect addressing 

➢ Base addressing 

➢ Stack addressing 

➢ Relative addressing 

➢ Multi-register addressing 

Porting tip: For developers, the addressing modes of the two architectures differ significantly but 

in typical development scenarios, addressing modes are not a significant focus. However, for specific 

use cases, such as those with high-performance requirements, different addressing modes and 

instruction sets may be used. For more information related to instruction sets, please refer to Chapter 

2.2 Instruction Set. 

2.5.3 Cache 

The TriCore architecture supports caching, including both data caching and instruction caching. 

If instruction caching is enabled, the CPU can perform prefetching when fetching instructions from 

memory. Furthermore, if data caching is enabled, the CPU can also perform prefetching when fetching 

data from memory. In the addressing space of the TriCore architecture, the region for caching is the 

[8H - 9H] segments, which is very limited, as shown in the following figure: 
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Figure 2.5.3-1 TriCore architecture caching regions 

The caching supported by the TriCore architecture also has the following limitations: 

➢ The addressing space for peripherals cannot be cached. 

➢ Local DSPR data cannot be saved in the local data cache. 

➢ Local PSPR data cannot be saved in the local instruction cache. 

The Arm architecture supports caching operations, including both data access caching and 

instruction caching. The general cache architecture is shown in the figure below: 

 

Figure 2.5.3-1 Multi-level cache architecture 

The Arm architecture used in the ARMv7-M series cores and the TriCore architecture are both 

based on the load/store architecture. The Cortex-M7 core of the ARMv7-M series is equipped with a 

local (L1) instruction cache (I-Cache) and data cache (D-Cache). The Arm architecture provides the 

memory prompt capabilities Preload Data (PLD) and Preload Instruction (PLI). This function allows 

the software to notify the hardware of the memory position expected to be used. The memory system 

can quickly respond to data access. 

Porting tip: For developers, while caching can improve data access performance, it can also create 

some issues for users. A typical issue with caching is data access consistency. For example, when using 

DMA to read data from the CPU's data cache, if the CPU writes new data into the data cache while the 
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DMA reads old data that is still stored in the data cache, inconsistencies in the data may occur. To avoid 

such issues, developers must use caches carefully. 

2.6 Floating Point Unit 
The TriCore architecture supports Floating Point Unit (FPU) and IEEE-754 single-precision 

floating-point arithmetic instructions, which include floating point addition, subtraction, multiplication, 

division, multiply-accumulate (MAC), etc. The TriCore architecture supports the IEEE-754 single-

precision format as well as conversions between signed and unsigned integers and 32-bit signed 

fractions in the TriCore architecture. In addition, the TriCore architecture also supports the comparison 

of floating point values and the four rounding modes of IEEE-754. 

The FPU of the TriCore architecture has some limitations, for example it only supports the IEEE-

754 single-precision format. The FPU does not support arithmetic operations on IEEE-754 

denormalized values. Furthermore, because the FPU of the TriCore architecture does not support 

denormalized floating point numbers, it does not completely comply with the IEEE-754 standard. 

Remainder functions that conform to the IEEE-754 standard cannot be implemented using FPU 

instructions, and Fused MACs do not support the IEEE-754 standard. 

The Arm architecture also supports floating point operations, which include the two versions of 

floating point FPv4-SP and FPv5. Both versions support single-precision 32-bit floating point 

operations. However, FPv5 provides additional instructions and supports double-precision 64-bit 

floating point operations. The Arm architecture also supports the IEEE-754 standard. 

Porting tip: When using floating point operations, developers must consider the level of support 

for floating point operations provided by both architectures. Unlike the TriCore architecture, the Arm 

architecture supports double-precision floating point operations. 

2.7 Debug 
The debug system of the TriCore architecture performs core debug through the Core Debug 

Controller (CDC), which allows access to the memory space of the core and chip. The CDC mainly 

provides support for the software development environment, including real-time control of core 

operations and restart, access to and update of internal registers and memory data, and configuration of 

the breakpoints and watchpoints of complex trigger conditions. 

The debug system of the Arm architecture accesses the core and memory regions through the 

Debug Access Port (DAP). The functions of the debug system include core operations and suspension, 

single-step operations, register and memory access, etc. 

The debug systems of the TriCore architecture and Arm architecture support standard JTAG 

connectors and trace functions. The TriCore architecture also supports a two-wire Device Access Port 

(DAP). Compared to a JTAG, a DAP provides faster debug speed and fewer debug pins. Similarly, the 

Arm architecture supports a two-wire debug interface called Serial Wire Debug (SWD). Furthermore, 

the Arm architecture supports custom coresight functions, providing additional debug and trace 

functions. It is able to perform debug on an entire System-on-Chip (SOC). 
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3 COMPARISON OF FUNCTIONAL SAFETY DESIGN 
The TriCore architecture and Arm Cortex-M series are widely used in the automotive field. As the 

automotive industry continues to advance, the safety and stability requirements for automotive systems 

also become stricter. The ISO 26262 standard for functional safety for road vehicles lists higher 

requirements for automotive systems. Within the ISO 26262 standard, different ASIL/SIL levels are 

defined based on risk assessment and analysis, and specific target indicators that need to be achieved 

are provided. ASIL D represents the highest level of potential risk, requiring the most rigorous 

approaches to fault management. In order to satisfy the functional safety requirements, chips that 

support the TriCore architecture and Arm architecture have proposed different solutions for functional 

safety, which will be described using specific chip series. The TriCore architecture will be analyzed 

based on the TC3xx series chips, while the Arm architecture will be analyzed based on the Cortex-M7 

series chips. Both series of chips meet ASIL D requirements. 

3.1 Core Safety 
Core safety in the TC3xx chips is implemented using a “lockstep” approach. The lockstep function 

is implemented through a master core and checker core. When the master core is executing logical 

processing, the checker core similarly performs logical processing on the inputs to the master core. 

After both cores have completed processing, a logical comparator compares the processed results of 

the two cores to verify if they are consistent. To prevent common-cause failures, the inputs to the 

checker core are delayed by 2 clock cycles. 

 

Figure 3.1-1 TC3xx core comparator 

Core safety in the Cortex-M7 series chips is also implemented through a lockstep approach. The 

Cortex-M7 provides a configurable option to implement dual-core lockstep, which involves designing 

a duplicate of the computational core. This function can effectively enable the necessary fault 

detection, meeting the ASIL D hardware standard for the computational core. Cortex-M7 redundant 

logic runs 2 clock cycles behind the main logic to prevent common-cause failures. 
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Figure 3.1-2 Cortex-M7 lockstep mechanism 

For single cores without lockstep mechanisms, additional mechanisms need to be implemented to 

meet functional safety requirements, such as a Software-Based Self-Test (SBST) for the core. The 

SBST is a software-based testing method that checks the logical processing functionality of the core. It 

requires real-time monitoring of the core's execution state while the core is running. However, even 

with additional safety mechanisms, non-lockstep cores can only meet requirements as high as ASIL B. 

3.2 Memory Protection 
In addition to core safety, ISO 26262 also includes the concept of Freedom From Interference 

(FFI). It requires that when data interchange occurs between modules with different ASIL levels, 

isolation and protection measures must be adopted in the memory space to prevent lower ASIL level 

modules from affecting higher ASIL level modules. Therefore, the Memory Protection Unit (MPU) is 

a necessary safety mechanism for the chip. 

Memory protection in the TC3xx chip is implemented based on address range, providing 

protection for both program and data regions. The memory protection of the TriCore architecture 

supports up to 6 protection sets, with up to 18 data protection segments and 10 program protection 

segments. 

The TC3xx chips support the memory protection functions of bus MPU. Compared to core 

memory protection, bus MPU can provide restrictions on access from slave memory to the bus master. 

ARMv7-M chips support the protected memory system architecture PMSAv7. The system address 

space implemented by PMSAv7 is protected by the MPU. The MPU divides the memory into several 

regions, with the Cortex-M7 supporting up to 16 protected regions. The location and size of each region 

are configurable. The size of each region must be a power of 2 but cannot be smaller than 32 bytes. 

For developers, memory protection functions are generally implemented by the operating system. 

Memory protection is configured through context switching within the operating system. When the 

operating system is ported, the differences between the two CPU architectures need to be considered 

for memory protection porting. 

  



 

Porting from the TriCore Architecture to the Arm Architecture
 23/35 www.shzckj.cn 

4 SOFTWARE DEVELOPMENT AND PORTING 

The software for porting described in this chapter is typically developed using high-level 

languages, such as the C language. The C language has features such as easy compilation and cross-

architecture compatibility, making it widely used in embedded systems. In the actual porting process, 

there may be assembly code dependencies specific to the architecture, especially in the boot code and 

exception handling programs. However, each architecture provides its own programs for users to 

reference, making the process more convenient to users. 

The process of porting software from the TriCore architecture to the Arm architecture is described 

through the following aspects: 

➢ Development toolchain 

➢ Chip startup process 

➢ Exception and interrupt handling 

➢ Peripheral access 

4.1 Development Toolchain 

The most prominent development environments for the TriCore architecture include Tasking and 

HighTec, and Infineon's miniwiggler debugger or professional debuggers like Lauterbach and 

iSYSTEM can also be used. For the Arm architecture, the development environments primarily include 

the Arm Compiler, IAR, GreenHills, KEIL, and GNU GCC. JLINK or professional debuggers such as 

Lauterbach and iSYSTEM can be used for debugging. 

Developers must consider the differences between the compilation environments when porting 

TriCore architecture software to the Arm architecture, which will be analyzed based on the following 

aspects: 

➢ Assembly code 

Typically, to improve the execution efficiency of programs, the program startup code and 

exception handling program will be written with assembly code. During porting, the 

differences between the assembly instructions for different architectures need to be considered. 

For details, refer to Chapter 2.2 Instruction Set. Typically, the IDE provides examples related 

to different architectures to the user. The startup code, exception handling, and other programs 

of the ported architecture can be replaced with the corresponding programs of the target 

architecture. 

➢ Data types 

Different compilers support different data types for various architectures, and the specific 

information can be found in the compiler's type definitions. For details, refer to Chapter 2.1.1 

Data Type. 

➢ Compilation and linking options 

The options available in different compilers need to be considered during the porting process, 

such as each compiler's support for various C language standards (C90, C99, etc.), adherence 

to different ANSI standards, and optimization options for compilation and linking. Different 

compilation and linking options will affect the execution results of the generated executable 

files. 
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➢ Linker file 

During the linking process of the compiler, the programs are assigned to different addressing 

spaces according to the linker file, such as the SRAM, PFLASH, and stack regions. Different 

compilers use different linker file formats. Typically, the IDE will provide users with linker 

file templates for different architectures. During the porting process, users need to replace the 

code sections of the ported architecture with the target architecture's corresponding sections. 

4.2 Chip Startup 

When the chip is powered on, it is typically necessary to initialize the internal registers and other 

chip components before executing the user-developed program (main function). The program can only 

run after the chip has been fully initialized. 

Using the TC3xx chip as an example for the startup process of the TriCore architecture, normally 

during startup the boot firmware will determine the code location to jump to based on the startup 

address defined in the boot mode header (BMHD). When the program jumps to the startup code location, 

it initializes the chip's core registers. 

The initialization process is as follows: 

1. Configure the cache mechanism by enabling or disabling data caching and program caching. 

2. Initialize address registers A0, A1, A8, and A9, and the system global registers. 

3. Initialize global variables and perform clear operations on uninitialized data (e.g. .bss or .sbss 

segments). 

4. Initialize the base address registers BIV and BTV of the interrupt and exception vector tables. 

The base address register values are configured according to the linker file. 

5. Initialize the stack register. The base address of the stack register is configured according to 

the stack address in the linker file. 

6. Initialize the global variables by setting the initial data (such as the data segments) to the actual 

initial values. Assign the data in the Flash region to the global variables of the RAM region.  

7. Initialize the system registers, such as MPU and CSA. 

8. Initialize the peripheral modules, such as the clock and I/O. 

9. Enter StartOS 

Chip bootup for the Arm architecture begins at the reset vector's position in the exception vector 

table, followed by the initialization process: 

1. Configure the cache mechanism by enabling or disabling data caching and program caching. 

2. Initialize the CPU core register. 

3. Initialize the stack register. 

4. Initialize modules such as the MPU and FPU. 

5. Initialize the global variables, such as the global variables of the .bss and .data segments. 

6. Initialize the peripheral modules, such as the clock. 

7. Enter the operating system (OS). 

During the porting process, developers need to consider the differences between the two startup 

processes of the two architectures. Typically, the IDE will provide examples of startup codes for 
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different architectures to users. In most cases, the majority of configurations do not require users to 

make modifications. The configurations can simply be replaced with the startup code for the target 

architecture. However, some specific modules need to be configured. For example, the MPU module 

needs to be configured according to the original requirements. The values of stack registers need to be 

configured based on the pointers in the linker file, and the initialization of global variables needs to be 

configured according to the partitions in the linker file. 

4.3 Exception and Interrupt Handling 

For developers, during the porting process, the interrupt and exception handling of the Arm 

architecture must be implemented according to the interrupt and exception handling modes of the Arm 

architecture. Refer to Chapter 2.4.3 Interrupt and Trap Vector Tables to configure the interrupt vector 

table. The interrupt vector table of the IAR compiler as an example, as shown in the following figure: 

 

Figure 4.3-1 Arm architecture interrupt vector table 

Interrupts and exceptions share a single interrupt vector table in the Arm architecture. The 

exception handling process is described below. 

➢ Trigger conditions for exceptions 

1. The core is in operation. 

2. The exception and interrupt source is in an enabled state. 

3. The priority level of the exception is higher than that of the current exception being 

handled. 

4. The exception is not masked by the exception masking register. 

 

➢ Exception entry process 

1. Push onto the stack and save the current registers and return addresses. If the processor is 

in thread mode, the process stack pointer (PSP) will be used as the stack pointer, and if 

the processor is in exception mode, the main stack pointer (MSP) will be used as the stack 

pointer. 

2. Obtain the exception vector  

3. After confirming the initial address of the exception handling function, retrieve the 

instruction to be executed for exception handling. 

4. Update the NVIC register and processor register. 
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➢ Exception handling process 

Specific handling tasks can be executed in the exception handling function. The processor will 

be in handler mode. In addition, the MSP is utilized in privileged access mode, and it supports 

interrupt preemption and interrupt nesting.  

 

➢ Exception return process 

Exception return will use special instructions in some processor architectures. This means that 

exception handling will not be written and compiled like normal C code. For Cortex-M 

processors, the exception return mechanism is triggered by a special address called 

EXC_RETURN. This value is generated at the exception entry point and stored in the link 

register LR. When this value is written into the PC by a valid exception return instruction, it 

triggers the exception return process. 

4.4 Peripheral Access 

The peripherals of Arm core chips will vary depending on the specific implementations by 

different chip manufacturers. The address space for Arm architecture chip peripherals is typically in 

the range of 0x40000000 to 0x9FFFFFFF. For specific addressing control, refer to Chapter 2.5.1 

Memory Address Space. 

Normally, chip manufacturers will provide users with peripheral drivers, therefore developers can 

use the peripheral drivers provided by chip manufacturers during the porting process. When integrating 

into the AUTOSAR architecture, developers need to understand the standard interfaces of various 

peripheral modules within the AUTOSAR architecture. The requirements of AUTOSAR can be met 

by using standard interfaces for chip packaging. For more details, refer to Chapter 5.2 MCAL Porting. 

  



 

Porting from the TriCore Architecture to the Arm Architecture
 27/35 www.shzckj.cn 

5 AUTOSAR ARCHITECTURE PORTING 

5.1 AUTOSAR Architecture 

The current mainstream software architecture for automotive electronics is the Automotive Open 

System Architecture (AUTOSAR). It is a development partnership founded in 2003 that pursues the 

objective of creating a standardized software architecture for automotive electronics (the partners 

include automotive manufacturers, parts suppliers, and research and service institutions from around 

the world). AUTOSAR has stipulated a set of dedicated open frameworks and industry standards for 

automobiles, which will serve as the fundamental infrastructure for managing future applications and 

standard software modules in the automotive industry. 

 

Figure 5.1-1 ZC Muniu AUTOSAR architecture 

The layered architecture and unified interfaces of AUTOSAR make porting more convenient. 

Developers only need to replace the modules dependent on architecture, such as the microcontroller 

layer (MCAL) and operating system (OS) module, when porting software developed according to the 

AUTOSAR architecture from the TriCore architecture to the Arm architecture. 

5.2 MCAL Porting 

In the architecture of microcontroller units (MCUs), in addition to the core, there are also chip 

peripherals, such as the analog-to-digital converter (ADC), general-purpose input/output (GPIO), clock 
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module, CAN communication module, timer module, etc. These peripheral modules must be called to 

implement the final operating logic functions. 

MCAL drivers have standardized the peripheral module drivers by abstracting the functionality 

and interfaces of the peripheral modules. This standardization facilitates porting between different 

architectures. MCAL divides the peripheral modules into several driver groups, which include: 

➢ Microcontroller drivers 

Microcontroller drivers are responsible for the basic core and peripheral configurations of the 

MCU. They mainly include the MCU driver (MCU), watchdog driver (WDG), and general 

purpose timer driver (GPT). 

➢ Memory drivers 

Memory drivers provide control functions for the on-chip storage (including internal flash and 

internal EEPROM). They mainly include the internal flash driver and internal EEPROM driver. 

➢ Communication drivers 

Communication drivers provide control functions for ECU communication peripherals and 

automotive network communication peripherals. They mainly include the SPI driver (SPI), 

LIN driver (LIN), CAN driver (CAN), FlexRay driver (FR), and Ethernet driver (ETH). 

➢ I/O drivers 

I/O drivers are the drivers for MCU on-chip input and output modules. They include the port 

control driver (PORT), digital I/O pin driver (DIO), analog-to-digital converter driver (ADC), 

pulse-width modulation output driver (PWM), input capture driver (ICU), and output 

comparison diver (OCU). 

➢ Crypto drivers 

Crypto drivers are the drivers for on-chip encryption modules. 

Because the implementation of peripheral devices can vary significantly between different chips, 

including differences in internal logic circuits and peripheral control registers, porting the MCAL 

module requires referencing AUTOSAR's requirements for each module. MCU and ADC driver 

porting are used as examples here. 

1. MCU driver porting 

MCU drivers mainly implement the clock, reset, and mode management for the MCU. The 

initialization process of the MCU driver is shown in the figure below: 
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Figure 5.2-1 MCU initialization process 

The following points must be considered when porting the MCU: 

• When the MCU initializes the clock, the system clock, bus clock, and various peripheral 

module clocks must be configured according to the internal clock of the MCU. The 

functions must be implemented in the Mcu_InitClock() and Mcu_DistributePllClock() 

interfaces. 

• MCU module management must be implemented through the Mcu_SetMode() interface 

and configured according to the different internal modes of the chip. 

• For MCU reset management, obtaining the reset reason and chip reset must be performed 

through the Mcu_GetResetReason() and Mcu_PerformReset() interfaces. 

 

2. ADC driver porting 

The ADC driver implements the configuration of the ADC module, including configuring the 

trigger source for ADC conversion, enabling or disabling ADC conversion, providing a 

notification mechanism for ADC conversion, and querying the conversion status and results. 

Additionally, the ADC driver offers a grouping mechanism, where different ADC channels 

are assigned to different groups, allowing individual ADC channel groups to be managed 

separately. 

For ADC porting, the following points must be considered according to the ADC module of 

the chip: 

• Supports different conversion modes: One-shot conversion and continuous conversion 

modes 
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Figure 5.2-2 ADC conversion mode 

• Supports different conversion trigger sources: Hardware triggers and software triggers 

  

Figure 5.2-3 Triggers under different conversion modes 

• Supports the priority level of each channel 

• Supports different result access methods 

5.3 AUTOSAR Operating System Porting 

The AUTOSAR operating system is a real-time operating system that provides interrupt handling, 

task scheduling, system timing, and clock synchronization functions. The AUTOSAR operating system 

provides some additional features based on the OSEK operating system, such as memory protection 

and time protection. The AUTOSAR OS is offered in 4 scalability classes: SC1, SC2, SC3, and SC4, 

as shown in the figure below: 
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Figure 5.3-1 AUTOSAR OS Scalability classes 

The implementation of the operating system is mainly dependent on the core architecture of the 

chip. For example, on a TriCore architecture, it utilizes the general purpose registers A0-15, D0-D15, 

PSW, PCXI, DPR0L, DPR0H, and system-specific registers. Additionally, the operating system 

employs TriCore's unique context management mechanism known as Context Save Areas (CSA).  

The following points have to be considered for Arm architecture operating system porting: 

• The special applications of the core general purpose registers R0 to R12 and the special 

registers R13 to R15 must be considered. For details, refer to Chapter 2.3 General Purpose 

Registers. 

• Exception and interrupt handling must be implemented through the specific mechanisms of 

the Arm architecture. For details, such as PendSV handling and SVC handling, refer to Chapter 

2.4 Exceptions and Interrupts. 

• When the operating system handles tasks or exceptions, the operating mode of the Arm 

architecture needs to be considered. The privilege access modes in handler mode and thread 

mode are different. Unprivileged mode tasks accessing special registers can be implemented 

using the Supervisor Call (SVC) instruction. 

• The memory protection functions required for functional safety must be configured based on 

the MPU functions of the Arm architecture. For details, refer to Chapter 3.2 Memory 

Protection. During memory protection switching, task-specific stack management should also 

be considered. 

  

https://so.csdn.net/so/search?q=SuperVisor&spm=1001.2101.3001.7020
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6 SUMMARY 
 

This manual primarily describes the differences between the TriCore and Arm architectures, and 

outlined the process of porting embedded software and the AUTOSAR architecture from the TriCore 

architecture to the Arm architecture, as well key points to take into account. 

The layered design and unified interfaces of the AUTOSAR architecture facilitate cross- 

architecture software porting. The Arm Cortex-M series processors were specifically designed for the 

microcontroller market and embedded systems. Their real-time performance, memory protection, 

interrupt handling, debugging capabilities, software tools and libraries, and scalability make the 

AUTOSAR architecture easier and more convenient to port and develop in. 

7 APPENDICES 

7.1 Appendix 1 Reference materials 

No. Description Version Date 

1 
Armv7-M Architecture Reference Manual.pdf 

https://developer.arm.com/documentation/ddi0403/latest/ 
E.e 

15 February 

2021 

2 Arm® Cortex®-M7 Processor Technical Reference 

Manual.pdf 

https://developer.arm.com/documentation/ddi0489/latest/ 

r1p2 15 November 

2018 

3 Arm® Compiler armclang Reference Guide.pdf 

Reference link: 

https://developer.arm.com/documentation/100067/0612?l

ang=en 

6.12 27 February 

2019 

4 Infineon-AURIX_TC3xx_UserManual V02_00  

5 Infineon-AURIX_TC3xx_Architecture_UserManual V01_00  

6 ZC.MuNiu Basic Software Platform Manual.pdf 

Reference link: 

http://www.shzckj.cn/portal/article/product_detail.html?id

=41 

/ / 

7 AUTOSAR_SWS_ADCDriver.pdf 4.3.1 2017-12-08 

8 AUTOSAR_SWS_MCUDriver.pdf 4.3.1 2017-12-08 

https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0489/latest/
https://developer.arm.com/documentation/100067/0612?lang=en
https://developer.arm.com/documentation/100067/0612?lang=en
http://www.shzckj.cn/portal/article/product_detail.html?id=41
http://www.shzckj.cn/portal/article/product_detail.html?id=41


 

Porting from the TriCore Architecture to the Arm Architecture
 33/35 www.shzckj.cn 

9 AUTOSAR_SWS_OS.pdf 4.3.1 2017-12-08 
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7.2 Appendix 2 Terminology and abbreviations 

Terminology/Abbreviation Description 

RISC Reduced Instruction Set Computer 

MMU Memory Management Unit 

RTOS Real Time Operating System 

DSP Digital Signal Processing 

ISA Instruction Set Architecture 

DMA Direct Memory Access 

SBST Software-based Self-test 

MPU Memory Protection Unit 

ASIL Automotive Safety Integrity Level 

IDE Integrated Development Environment  

AUTOSAR Automotive Open System Architecture 

SC Scalability classes 

CSA Context Save Areas 
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