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CHAPTER 1 OVERVIEW 
 

This document provides a guide for migrating from the Tricore platform to the ARM 

Cortex-R52/R52+. 

1.1 Overview of Arm Architecture 

 

ARM is a set of related computing technology utilizing the RISC architecture, originally 
developed by Advanced RISC Machines Limited. The ARM architecture is extensively utilized in 
embedded systems design and is known for its low power consumption for use in the mobile 
communication fields, consumer electronics (e.g., mobile phones, multimedia players, handheld 
video game consoles, computers, and computer peripherals). It is also applicable in industries, 
automotive, aerospace, and other fields. 

The ARM processor cores are divided into three families: Cortex-A family, Cortex-R family, 
and Cortex-M family. 

• Cortex-A family 

Application Processors, including processors such as Cortex-A5, Cortex-A8, Cortex-A9, 
Cortex-A15, Cortex-A3x, Cortex-A5x, Cortex-A7x, and Cortex-A71x, which are based on 
ARMv7-A, ARMv8-A, and ARMv9-A architectures. These architectures provide solutions for 
devices running complex operating systems such as Linux, Android, and iOS. 

These processors are widely used in a variety of applications, ranging from low-cost 
handheld devices to smartphones, tablets, set-top boxes, and enterprise networking 
equipment. They are capable of handling massive data processing and high-performance 
computing tasks. Typically, these processors operate at very high clock speeds (generally over 
1GHz) and support features like Memory Management Unit (MMU), which are required by 
operating systems such as Linux, Android, Windows, and mobile operating systems. 
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• Cortex-R family 

Real-time processors, including Cortex-R4, Cortex-R5, Cortex-R7, Cortex-R8, Cortex-
R52/R52+ and Cortex-R82 are based on the ARMv7-R and ARMv8-R architectures. The 
Cortex-R family represents a line of real-time microcontroller cores specifically designed for 
high-safety and high-performance embedded systems. These processors are intended to offer 
rapid and deterministic response times, making them particularly suited for applications that 
require high levels of real-time performance and safety, such as automotive, industrial, and 
aerospace systems. While these real-time processors generally do not support full versions of 
operating systems such as Linux and Windows (with the exception of the Cortex-R82), they do 
support a wide range of Real-Time Operating Systems (RTOS).  

• Cortex-M family 

Microcontroller Processors are specialized computing components designed for low-
power, high-performance, and scalable applications. This category includes processors such as 
Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M33, Cortex-M55, and 
Cortex-M85 which are based on the ARMv6-M, ARMv7-M, and ARMv8-M architectures. The 
Cortex-M family is a series of low-power, high-performance, and extensible processor cores 
that include many features particularly suited for embedded systems. Their user-friendly nature 
has greatly contributed to their success across the microcontroller, IoT, and embedded systems 
markets. The Cortex-M family is widely used in a range of applications from consumer 
electronics to industrial control systems, including the microcontroller market, IoT, embedded 
systems, and automotive controllers. 

This document takes ARM's Cortex-R52/R52+as the target platform for porting, and its 
corresponding ARM core architecture is ARMv8-R. 

1.2 Overview of TriCore Architecture 

 

The TriCore architecture, developed by Infineon, is the foundational technology behind 
the AURIX series of platforms. The AURIX TriCore platform integrates RISC processor cores, and 
digital signal processors (DSPs) into a unified MCU solution. These controllers are pivotal in 
advancing automation, electrification, and connectivity in modern vehicles. Infineon has 
launched two generations of AURIX products: the TC2xx series and the TC3xx series, referred to 
as AURIX 1G and AURIX 2G respectively. 

• AURIX 1G TC2xx family 
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Figure 1.2-1 TC2xx chip family 

The AURIX™ TC2xx family is a line of processors based on the single-core and multi-core 

32-bit TriCore™ architecture, designed to meet the highest safety standards while offering 

enhanced performance. The AURIX™ platform is utilized in automotive powertrain systems, 

including electric and hybrid vehicles, as well as in safety systems such as steering, braking, 

airbags, and advanced driver assistance systems (ADAS). The core architecture of AURIX™ 

TC2xx employs the TriCore TC1.6P and TC1.6E architectures. The TriCore TC1.6P core is 

designed for high-performance applications, offering a maximum clock frequency of up to 300 

MHz. Conversely, the TriCore TC1.6E core is optimized for efficient low-power operation, with 

a maximum clock frequency of up to 200 MHz. 

• AURIX 2G TC3xx family 

 

Figure 1.2-2 TC3xx chip family 
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The AURIX™-TC3xx series combines a high-performance and high-safety architecture, 
with up to six cores, making it suitable for next-generation autonomous driving domain control 
and data fusion applications. The AURIX™ TC3xx microcontrollers are also suitable for safety-
critical applications such as airbag, braking, and power steering systems, as well as sensor 
systems for radar, lidar, or camera technologies. The AURIX™ TC3xx cores utilize the TriCore 
TC1.6.2P architecture. The TriCore TC1.6.2P architecture is similar to the TC1.6P architecture, 
but but offers enhanced memory access performance and expanded memory protection 
compared to the TC1.6P architecture. 

This document focuses on the AURIX TriCore TC1.6P platform architecture as the target 
for porting. The AURIX TriCore's TC1.6P platform architecture supports both the TC2xx and 
TC3xx series. Unless specifically stated otherwise, the content of this document is based on the 
TriCore's TC1.6P platform architecture as a reference. 

1.3 Introduction to ARMv8-R Architecture 

 

Early Cortex-R processors, such as the Cortex-R5, were based on the Armv7-R 
architecture. The Cortex-R52 and Cortex-R52+ processors implement the Armv8-R 
architecture, designed to address the increasing complexity of automotive real-time software 
and the transition from discrete dedicated controllers to more centralized and integrated 
controllers. The Armv8-R architecture adds support that enables better control of software 
within a single processor, providing code isolation and supporting repeatable and 
understandable behavior, including virtualization capabilities in real-time processors. 

• Early Cortex-R processors, such as the Cortex-R5, were based on the Armv7-R 
architecture. The Cortex-R52 and Cortex-R52+ processors have implemented the 
Armv8-R architecture, which aids in addressing the increasing complexity of 
automotive real-time software and facilitates the transition from discrete 
specialized controllers to more centralized and combined controllers. The Armv8-
R architecture enhances support, enabling better software control within a single 
processor, providing code isolation, and supporting repeatable and 
understandable behavior, including virtualization capabilities in real-time 
processors. It supports both the T32 and A32 instruction sets. 

•  Provides backward compatibility with the Armv7-R instruction set. 
• Enables programs built on Armv7-R to be directly compiled and built in the 

Armv8-R environment. 
• Supports three levels of exception levels EL0/EL1/EL2, and a two-stage Memory 

Protection Unit (MPU). The EL1 MPU is typically managed by the operating system 
to achieve isolation between the operating system and applications, as well as 
between different execution units within an application. The EL2 MPU is 
programmed by code running at EL2 to achieve isolation control at the virtual 
machine level. 

• Supports GIC V3.0, offering efficient interrupt response and inter-core distribution 
mechanisms, supporting up to 960 shared interrupts (SPIs) among cores. 
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1.4 TC1.6P Architecture Overview 

 

The TriCore architecture is the first unified single-core 32-bit microcontroller DSP 
architecture, optimized for real-time systems. The TriCore architecture's Instruction Set 
Architecture (ISA) combines the real-time capabilities of microcontrollers, the computational 
power of DSPs, and the cost-effective load-store architecture of RISCs into a compact, 
programmable core. 

 

Figure 1.4-1 TriCore Architecture 

The ISA supports a unified 32-bit address space, with optional virtual addressing and 
memory-mapped input/output. The architecture also supports both 16-bit and 32-bit 
instruction formats. All instructions have a 32-bit format. The 16-bit instructions, a subset of 
the 32-bit instructions, are optimized for frequently used operations, significantly reducing 
code space and minimizing memory, system, and power consumption. 

Real-time responsiveness is primarily determined by interrupt latency and context-
switching time. A high-performance architecture minimizes interrupt latency by avoiding long 
multi-cycle instructions and providing flexible hardware support for interrupts. The TriCore 
architecture also supports rapid context switching. 
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CHAPTER 2 ARCHITECTURE COMPARISON 
 

This article aims to elucidate the distinctions between the ARM and TriCore platforms by 
analyzing the following aspects: 

• Programming Models 

The programming models of the two architectures are introduced, highlighting the 
differences from the perspective of developers. This mainly includes an analysis of data type 
formats and operating modes. 

• Instruction Sets 

The differences in the instruction sets of the two architectures are discussed. 

• General-Purpose Registers 

The distinctions in the general-purpose registers used in each architecture are explained. 

• Exceptions and Interrupts 

The mechanisms for handling interrupts and exceptions are compared, including interrupt 
priorities, interrupt and exception processing methods, and interrupt and exception vector 
tables. 

• Memory Models 

The differences in memory models are outlined, covering aspects such as address spaces, 
addressing modes, and memory protection units. 

• Debugging Systems 

The differences in the debugging systems available for each architecture are described. 
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2.1 Programming Models 

 

Programming models are the interfaces for developers when developing with 

microcontrollers. Familiarity with the chip's programming model is essential for improving 

development efficiency. This section will discuss the differences between the two architectures 

in terms of the data types supported by the chip, byte order, and the operational modes of the 

chip. 

2.1.1 Data Type 
The ARM Cortex-R52/R52+ supports data types including: Byte (8 bits), Halfword (16 bits), 

Word (32 bits) and Doubleword (64 bits). It also supports half-precision, single-precision, and 
double-precision floating-point data types. 

The TriCore architecture supports data types including: Boolean, Bit String, Byte, Signed 
Fraction, Address, Signed and Unsigned Integers, and IEEE-754 Single-Precision Floating-Point 
Number. 

As a C language developer, the focus is on the data types within the compiler. This 
document will compare and analyze the commonly used Hightec compiler for TriCore and the 
Arm Compiler for ARM as examples. 

Table 2.1.1-1: Data Types Supported by Hightec and Arm Compiler 

Type Hightec(TriCore) Arm Compiler(ARM) 

char 8bit 8bit 

short 16bit 16bit 

int 32bit 32bit 

long 32bit 32bit 

long long 64bit 64bit 

float 32bit 32bit 

double 64bit 64bit 

long double 64bit 64bit 

pointer  32bit 32bit 

enum  8bit-32bit 8bit-32bit 

 

Porting Tips 1: Both compilers have general types that can be directly used when defining 
variables during porting. Additionally, if users are porting with other compilers, they can 
compare and analyze in a similar way. 
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Porting Tips 2: The length of each data type is compiler-dependent, and it is necessary to 
confirm the length of the data types under a specific compiler during porting. For C language 
developers, it is recommended to use the ‘sizeof’ keyword to obtain the length of data types in 
programming, rather than writing in fixed length values. 

Porting Tips 3: Minimize the use of bit fields (Bit types) as it can reduce the portability of 
the code. 

2.1.2  Byte order and data alignment 

The ARM Cortex-R52/R52+ support either little-endian format (where the least significant 
byte is stored at the lower memory address) or big-endian format (where the most significant 
byte is stored at the lower memory address). 

• Little-endian format of ARM Cortex-R52/R52+ 

The storage of a word (4 bytes) and a half-word (2 bytes) in memory is illustrated in the 
following figure: 

 

Figure  2.1.2-1 Little-endian format of ARM Cortex-R52/R52+ 

• Big-endian format of ARM Cortex-R52/R52+ 

The storage of a word (4 bytes) and a half-word (2 bytes) in memory is illustrated in 

the following figure: 

 

Figure  2.1.2-2 Big-endian format of ARM Cortex-R52/R52+ 

The byte order of ARM Cortex-R52/R52+ can be selected between little-endian and big-

endian modes based on the control input at reset, with little-endian mode being the default. 

Both TriCore and ARM architectures use 4-byte alignment (Word aligned) for addressability. 

The data alignment method for both architectures generally aligns data according to its size. 
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In the TriCore architecture, data storage and CPU register data storage both use little-

endian format (where the least significant byte is stored at the lower memory address), as 

illustrated in the following figure: 

 

Figure  2.1.2-3 TriCore Byte Ordering 

Porting Tip: As a developer, during the porting process, it is necessary to consider the data 
defined in the program, especially the variables defined using custom struct definitions, and 
take into account the endianness of the byte sequence. When porting, if the ARM architecture 
is set to big-endian mode, structures involving byte order should be modified to 
accommodate big-endian mode. 

2.1.3 Operating Modes 
 

The ARM Cortex-R52/R52+ can execute in various modes, each associated with an 

Exception Level (EL). An exception will cause the processor to switch to the corresponding 

mode. The User mode is associated with Exception Level EL0. The System, FIQ (Fast Interrupt 

Request), IRQ (Interrupt Request), Supervisor, Abort, and Undefined modes are associated with 

Exception Level EL1. The Hypervisor mode is associated with Exception Level EL2. After 

booting, the system defaults to EL2 mode. 

The ARM Cortex-R52/R52+ can switch from User mode to EL1 using the Supervisor Call 

(SVC) instruction. Can switch from EL1 to EL2 using the Hypervisor Call (HVC) instruction. HVC 

instruction can be only called from EL1. 

The TriCore architecture has three levels of I/O Privilege: User-0 mode, User-1 mode, and 

Supervisor mode. 
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Table 2.1.3-1 TriCore architecture I/O Privilege Levels. 

I/O Privilege Level Description 

User-0 mode In this mode, tasks do not have access to peripherals and cannot enable or 

disable interrupts. 

User-1 mode Tasks in this mode are used to access ordinary, unprotected peripherals, such as 

reading and writing to serial ports, accessing timers, and accessing the status 

registers of most I/O. 

Supervisor mode Tasks in this mode are allowed to access system registers and peripherals, and 

can enable or disable interrupts. 

 

Porting Tip: During the porting process, developers need to consider the differences in 
permissions between the two architectures when accessing resources that require privileges. 
This is especially important when porting operating systems, as the restrictions on privileged 
access must be taken into account. 

2.2 Instruction Sets 

 

The ARM Cortex-R52/R52+ is compliant with the Armv8-R AArch32 architecture and has 

two instruction set states: 

• A32: Executes 32-bit, word-aligned A32 instructions. 
• T32: Executes 16-bit and 32-bit, half-word-aligned T32 instructions. 

Both the TriCore and ARM architectures support reduced instruction set sizes of 16-bit 

and 32-bit. 

The TriCore architecture instruction set types include: Arithmetic, address arithmetic, 

comparison, address comparison, logical, MAC, shift, coprocessor, bit logical, branch, bit 

field, load/store, packed data, and system instruction. 

Most TriCore architecture instructions are completed within a single machine cycle. 

For a comparison of the TriCore and ARM architecture instruction sets, refer to the 

following: 

Table 2.2-1 Comparison of TriCore and ARM Architecture Instruction Sets 

TriCore Architecture Instruction Sets ARM Architecture Instruction Sets 

mov d3, d1 MOV R8, R7 

add d3, d1, d2 ADD R1, R1, R3 

j foobar B label 
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CMPSWAP.W e0, [a0+4] CMP R6, R7    

 

Porting Tip 1: Due to the significant differences in the instruction sets between the two 

platforms, developer should rewrite assembly code during the porting. 

Porting Tip 2: The format of assembly code is related to the compiler. Please refer to the 

corresponding compiler manual. 

 

  



 

© 2017-2023 上海                                                                                                                    Page12 

2.3 General-Purpose Registers 

 

The ARM Cortex-R52/R52+ is based on the Armv8-R architecture. The general-purpose 
registers of the Armv8-R architecture are illustrated in the figure below: 

 

Figure  2.3-1 The general-purpose registers of the Armv8-R architecture 

In the Armv8-R architecture, various modes have been introduced, including User, IRQ, 
FIQ, Undef, Abort, SVC, and Hyp. Registers R0-R7 are general-purpose registers shared across 
all modes. Except for User mode, all other modes have their banked registers. In IRQ, FIQ, 
Undef, Abort and SVC mode, R13 (SP) and R14 (LR) registers are banked. In Hyp mode, R13 
(SP) is banked, R14 is not banked. R13 holds the stack pointer (SP) and R14 holds the return 
address (LR). The FIQ mode has its own separate R8-R12 registers. 

When the ARM Cortex-R52/R52+ operates, if there is a switch in the current operating 
mode, SP and LR will use the corresponding R13 and R14 of that mode as their actual running 
values. 

The TriCore architecture's core registers are divided into two categories: General-Purpose 

Registers (GPRs) and Core Special Function Registers (CSFRs), which include: 

• General-Purpose Registers (GPRs): 

The General-Purpose Registers (GPRs) consist of 16 general-purpose address registers 

A[0] to A[15] and 16 general-purpose data registers D[0] to D[15]. 
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Figure 2.3-2 TriCore GPRs 

Four of the general-purpose registers have special functions:： 

A[10]：Stack Pointer (SP) register； 

A[11]：Return Address (RA) register； 

A[15]：Implicit Address register； 

D[15]：Implicit Data register. 

• Core Special Function Registers (CSFRs) 

CSFRs include system registers such as: PC(Program Counter)/PSW(Program Status 

Word)/PCXI( Previous Context Information register). These registers play a key role in task 

context switching. 

Additionally, include: Compatibility Mode Register (COMPAT)、Access Control Registers、 

Interrupt Registers、Memory Protection Registers、Trap Registers、Memory Configuration 

Registers、Core Debug Controller Registers、Floating Point Registers. 

Porting Tip: Developer need  pay close attention to the differences in registers between 

the two cores during the porting process. When encountering exceptions, in the TriCore 

architecture, it is necessary to analyze the TIN stored in register D[15] and the trap entry 

address recorded in A[11]. It is also important to note the Stack Pointer (SP) register; in the 

TriCore architecture, check register A[10] to determine the stack location, while in the ARM 

architecture, check register R13 to determine the stack location. 
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2.4 Exceptions and Interrupts 

 

The interrupt controller for the ARM Cortex-R52/R52+ is based on the ARM GIC 

architecture. The ARM Cortex-R52/R52+ supports the following types of interrupts: 

Table 2.4.1-1: Interrupt Types Supported by ARM Cortex-R52/R52+ 

Interrupt Type Expound 
Number of 
supports 

Private Peripheral 
Interrupts (PPIs) 

These are interrupts that are private to each 
processor core. 

16 

Shared Peripheral 
Interrupts (SPIs) 

These are interrupts generated by peripherals that 
can be routed to a specific processor core through 
software configuration. 

960 

Software Generated 
Interrupts (SGIs) 

These are interrupts that are triggered by software 
writing to the Software Generated Interrupt (SGI) 
generation system register. 

16 

 

The ARM Cortex-R52/R52+ features a processor-level GIC Distributor, as well as multiple 

core-level GIC Redistributors (GIC CPU Interface Per Core). The GIC logic is depicted in the 

following figure: 

 

Figure  2.4.1-1 GIC Logic Block Diagram 

The interrupt controller of the ARM Cortex-R52/R52+ supports grouping, for example: 

Group 0 is used to receive FIQ interrupts, while Group 1 is used to receive IRQ interrupts. The 

interrupt controller registers are memory-mapped, with the physical base address for different 

processors specified by the CFGPERIPHBASE register. 
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The ARM Cortex-R52/R52+ has a two-level exception vector table, with separate exception 

vector tables for EL1 mode and EL2 mode. The structure of the exception vector table is shown 

in the following table: 

Table 2.4.1-2: Interrupt Vector Tables for EL1 and EL2 Modes 

Address 
Offset 

EL1 Vector Table EL2 Vector Table 

0x00 

Reset.  

Note that ARM Cortex-R52/R52+ 
always reset from EL2, do not have 
a 'real reset' in EL1 

Reset 

0x04 Undefined Instruction 
Undefined Instruction (From Hypervisor 
Mode) 

0x08 Software Interrupt HVC (from Hypervisor Mode) 
0x0C Prefetch Abort Prefetch Abort (from Hypervisor Mode) 
0x10 Data Abort Data Abort (from Hypervisor Mode) 
0x14 Reserved Hypervisor Trap/Hypervisor mode entry 
0x18 IRQ IRQ 
0x1C FIQ FIQ 

 

The ARM Cortex-R52/R52+ exception model defines three Exception Levels (EL0-EL2), 

where: 

• EL0：The lowest software execution privilege level, which is the user mode； 

• EL1：Privileged mode, an enhanced exception level； 

• EL2：Privileged mode, provides support for virtualization. 

 
The ARM Cortex-R52/R52+ enters the exception handling process after capturing specific 

events and returns the program execution process to the state when the exception occurred 

using the exception return instruction. 

The TriCore architecture's interrupt system supports multiple interrupt sources, including 

on-chip peripheral interrupts and external interrupts. The service providers for interrupt 

requests can be either the CPU or the DMA. Each interrupt source is assigned a unique 

interrupt priority. The exceptions (Traps) in the TriCore architecture include non-maskable 

interrupts (NMI), instruction exceptions, memory management exceptions, or exceptions 

caused by illegal access. Once an exception occurs, it cannot be masked by software. 
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The interrupt requests in the TriCore architecture are processed based on interrupt priority 

and support interrupt nesting, with the following interrupt priority rules: 

• High-priority interrupts can preempt the processing of low-priority interrupts. 

• Interrupts with the same priority will not interrupt each other. 

• The Interrupt Control Unit (ICU) decides which interrupt to handle based on priority 
arbitration. 

All service requests are assigned a Priority Number (SRPN). Each interrupt handler has its 

own Priority Number. Different interrupt service requests must be assigned different Priority 

Numbers. There can be up to 255 interrupt priorities, with Priority Number 0 being the lowest 

interrupt priority. Exceptions have the highest priority and cannot be masked by software. 

The TriCore architecture defines 8 types of exceptions. Each type of exception is 

distinguished by a Trap Identification Number (TIN), and the value of TIN is assigned to the 

D[15] register before entering the exception service routine. Additionally, exceptions are 

categorized as synchronous exceptions, asynchronous exceptions, hardware exceptions, 

software exceptions, and non-recoverable exceptions. 
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© 2017-2023 上海                                                                                                                    Page18 

 

Figure 2.4-2 TriCore Exception Classification 

In the TriCore architecture, there are two vector tables: one for interrupts and one for 

exceptions. 

 

• Interrupt Vector Table Method 

The base address of the interrupt vector table is stored in the Base of Interrupt Vector 

Table Register (BIV). Before enabling interrupts, the BIV register can be modified using the 

MTCR instruction during system initialization. The base address of the interrupt vector table 

in the BIV register must be aligned to an even byte address (half-word address). 

When an interrupt occurs, the CPU calculates the entry point of the corresponding 

interrupt service function from the contents of the PIPN (Pending Interrupt Priority Number) 

and BIV registers. There are two vector table spacing options available: 32 bytes or 8 bytes. 

The vector table spacing is determined by the VSS bit in the BIV register. The specific 

calculation method is as follows: 

if (BIV.VSS == 1’b0) 

ISR_Entry_PC = {BIV[31:1],1’b0} | {PIPN<<5}; 

Else 
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ISR_Entry_PC = {BIV[31:1],1’b0} | {PIPN<<3}; 

 

Figure 2.4-3 TriCore Interrupt Vector Table 

• Exception Vector Table 

The base address of the exception vector table is stored in the Base Trap Vector Table 

Pointer (BTV) register. When an exception occurs, the entry address of the exception handling 

function is obtained by performing a bitwise OR operation between the Trap Class shifted left 

by 5 bits and the value of the BTV register. Shifting the Trap Class left by 5 bits creates a 32-

byte interval between the entry points of different exception handling functions; therefore, the 

value in the BTV register must be aligned on at least a 256-byte boundary. 

Porting Tip: The ARM Cortex-R52/R52+ defaults to using the exception vector table 

corresponding to EL2 mode after startup. After the completion of the Reset Handler in the EL2 

mode, can configure the EL1 mode exception vector table and jump to the Reset Handler of 

the EL1. Note that ARM Cortex-R52/R52+ always reset from EL2, do not have a 'real reset' in 

EL1. An example reference process is as follows: 

• Example of EL2 mode exception vector table: 
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Figure  2.4-4 ARM Cortex-R52/R52+ EL2 Mode exception Vector Table 

 

• EL2 Mode Reset Handler Example: 

 

Figure  2.4-5 ARM Cortex-R52/R52+ EL2 Mode Reset Handler Example 

To switch to the EL1 mode exception vector table, set the base address of the EL1 mode 

exception vector table (EL1_Vectors) to the VBAR register, and then use the ERET instruction to 

jump to the Reset Handler of the EL1 mode. 

• EL1 Mode Exception Vector Table Example: 



 

© 2017-2023 上海                                                                                                                    Page21 

 

Figure  2.4-6 ARM Cortex-R52/R52+ EL1 Mode Exception Vector Table 
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2.5 Memory Models 

 

The Armv8-R AArch32 architecture used by the ARM Cortex-R52/R52+ defines the 

PMSAv8 memory model. Memory access permissions and attributes are determined by the 

Memory Protection Unit (MPU). In the ARM Cortex-R52/R52+, the physical address is always 

identical to the virtual address. The default memory view of Armv8-R is illustrated in the 

following figure: 

 

Figure  2.5.1-1 ARM Cortex-R52/R52+ Memory View 

Armv8-R includes the following types of memory： 

• Normal memory 

Normal memory is a conventional memory area suitable for various types of memory 

storage, such as ROM, RAM, Flash, and SDRAM. This area allows programs to read from and 

write to it. 

• Device memory 

Device memory is designed for peripheral and I/O access. This area does not support 

caching but still allows data to be read and written through buffering.  
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Figure  2.5.1-2 ARM Cortex-R52/R52+ Memory System Block Diagram 

The ARM Cortex R52/R52+ features a multi-level memory system. Each core has its own 

independent data cache and instruction cache. Additionally, each core also has its own TCM 

(Tightly Coupled Memory), which can be used by software for fast data read/write and instruction 

execution. The AXIM interface is the primary interface for accessing external memory. The Flash 

interface is designated for accessing external read-only memory, such as Flash. The LLPP 

interface is for accessing peripherals and specific external memories. 

The ARM Cortex-R52/R52+ provides two programmable Memory Protection Units (MPUs), 

one for EL1 mode and one for EL2 mode. Each MPU can cover a 4GB address space and is 

configured with elements including start address, end address, access permissions, and memory 

attributes. 

 

Figure  2.5-3 ARM Cortex R52/R52+ MPU Block Diagram 
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ARM Cortex R52/R52+ supports virtualization. Applications and RTOS access the EL1 MPU 

to achieve isolation between applications and between applications and the RTOS. The virtual 

machine controls the EL2 MPU to achieve isolation between virtual machines. The ARM Cortex 

R52/R52+ MPU uses 2 bits to control access permissions, as shown in the table below: 

Table 2.5-1: Access Permission Control of the ARM Cortex R52/R52+ MPU 

Permission 

Bit Position 
EL0&EL1 EL2 

00 No access Read/write 

01 Read/write Read/write 

10 No access Read-only 

11 Read-only Read-only 

 

The TriCore architecture uses a 32-bit address width, providing access to a maximum 

addressable range of 4GB. The address space is divided into 16 memory segments [0H - FH], 

each segment being 256MB in size. Each segment can serve as peripheral space, cached space, 

or non-cached space. 

The physical memory attributes of the segments [0H - 7H] depend on the specific 

implementation requirements. If the Memory Management Unit (MMU) is enabled, segments 

[0H - 7H] are considered virtual addresses and must be translated upon access. If the MMU is 

not used, the access characteristics depend on the specific implementation requirements, and 

illegal access may result in an exception. 

The TriCore architecture's SRAM (Scratchpad RAM) supports program segments and data 

segments, located in the C segment (PSPR) and D segment (DSPR), respectively. In a multi-core 

architecture, each CPU's data memory DSPR and program memory PSPR achieve distinct 

memory non-access through the access to mirror areas of DSPR and PSPR, with these mirror 

areas distributed within the segments [0H - 7H]. 
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Figure 2.5-4 TriCore SRAM Memory Segment. 

The memory of the segments [8H - DH] is used for defining non-volatile storage spaces 

and special storage areas, such as the program flash memory (PFLASH), data flash memory 

(DFLASH), on-chip firmware BROM, and local memory unit (LMU). Additionally, the memory in 

segments [8H - 9H] allows cached access, while the memory in segments [AH - DH] does not 

allow cached access. 

The memory of segments [EH - FH] is used to define the access areas for peripherals, with 

the on-chip peripheral memory areas, such as peripheral registers, allocated to this segment. 

The TriCore architecture's addressing mode accesses memory data through load and store 

instructions, with data access widths of 8-bit, 16-bit, 32-bit, or 64-bit. The TriCore architecture 

supports seven addressing modes, including: 

Table 2.5-2: The Seven Addressing Modes Supported by the TriCore Architecture 

Addressing Modes. Description 

Absolute Addressing This is generally used for accessing peripheral registers and global data. In 

absolute addressing, the 18-bit constant specified in the instruction is used as 

the memory address. The complete 32-bit address is formed by shifting the 

high 4 bits of the 18-bit constant to the high 4 bits of the 32-bit address, with 

the remaining bits filled with 0. 

Base + Short Offset The effective address in this mode is the sum of the base address register and 

the sign-extended 10-bit offset. 

Base + Long Offset Compared to Base + Short Offset, the offset is a 16-bit sign-extended value, 

allowing any location in memory to be addressed with a two-instruction 

sequence 
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Pre-increment Typically used for stack operations when pushing data onto the stack. This 

addressing mode uses the sum of the address register and the offset as the 

effective address and writes the result back to the address register. 

Post-increment Typically used for stack operations when popping data off the stack. This 

addressing mode uses the value in the address register as the effective 

address, then adds the sign-extended 10-bit offset to the previous value, and 

finally updates the address register. 

Circular Generally used for accessing data values in a circular buffer during filter 

computations. 

Bit-reverse Used for calculations in Fast Fourier Transform (FFT) algorithms. 

 

The TriCore architecture supports caching and features both data and instruction caches. If 

the instruction cache is enabled, the CPU can perform speculative processing when fetching 

instructions from memory. Similarly, if the data cache is enabled, the CPU can also perform 

speculative processing when retrieving data from memory. For the TriCore architecture's 

addressable space, the area available for caching is within the segments [8H - 9H], which is a 

limited range, as shown in the following figure: 

 

Figure 2.5-5 TriCore Architecture Cache Area 

Additionally, the caching in the TriCore architecture has the following limitations: 

• The address space of peripherals cannot be cached. 

• Data from the local DSPR (Data Scratch Pad RAM) cannot be stored in the local data 
cache. 

• Data from the local PSPR (Program Scratch Pad RAM) cannot be stored in the local 
instruction cache. 
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Porting Tip 1: For developers, while caching can enhance the performance of data access, 

it can also introduce issues, such as data consistency problems. A typical issue arises when a 

DMA (Direct Memory Access) operation reads memory from the CPU's data cache. If the CPU 

writes new data to the data cache but DMA reads the old data still stored in the cache, data 

consistency problems can occur. To avoid such issues, developers need to use caches 

cautiously. 

Porting Tip 2: For developers, there may be significant differences in addressing modes 

between the two architectures. Generally, addressing modes are not a major concern in typical 

development scenarios. However, in special application scenarios, such as those with high 

performance requirements, different addressing modes and instruction sets may be utilized. 
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2.6 Debugging Systems 

 

The ARM Cortex R52/R52+ supports debugging through JTAG (Joint Test Action Group) or 

SWD (Serial Wire Debug) protocols. Debugging can be facilitated by connecting a debug device, 

such as the ARM DSTREAM, to the target device. 

 

Figure  2.6-1 ARM Cortex R52/R52+ Debug Model 

The TriCore architecture's debugging system is implemented through the Core Debug 

Controller (CDC), which facilitates core debugging and allows access to the core and the chip's 

memory space. The CDC primarily supports the software development environment by 

providing real-time control over the core's execution and restart, access to and updating of 

internal registers and memory data, and setting complex breakpoint and watchpoint 

conditions. 

Both the TriCore and ARM architectures' debugging systems support the standard JTAG 

interface and also feature trace functionality. The TriCore architecture additionally supports a 

two-wire Device Access Port (DAP), which offers higher debugging speeds and requires fewer 

pins compared to JTAG. ARM architecture, on the other hand, supports a two-wire debugging 

interface known as Serial Wire Debug (SWD). Furthermore, ARM architecture supports the 

proprietary CoreSight feature, which provides additional debugging and tracing capabilities. 

CoreSight allows for the debugging of the entire System on Chip (SoC), offering a 

comprehensive solution for system-wide debug and trace needs. 
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CHAPTER 3 FUNCTIONAL SAFETY DESIGN COMPARISON. 

The TriCore architecture and the ARM Cortex-R series architectures are widely used in the 

automotive field. With the development of the automotive industry, the requirements for the 

safety and stability of automotive systems are becoming increasingly stringent. The functional 

safety standard ISO 26262 has also set higher requirements for automotive systems. In the ISO 

26262 standard, different ASIL / SIL levels based on risk assessment analysis are proposed, 

along with specific target indicators that need to be achieved. ASIL D represents the highest 

level of potential risk and requires the strictest methods for fault management. To meet 

functional safety requirements, chips supporting the TriCore architecture and ARM architecture 

have proposed their respective solutions for functional safety. This section introduces the 

specific chip series, with the TriCore architecture focusing on the TC3xx series chips and the 

ARM architecture focusing on the Cortex-R52/R52+ series chips. 

3.1 Core Safety Mechanisms. 

The core safety of the TC3xx chip is implemented through a core lockstep mechanism. 

This is achieved by using a master core and a checker core to perform lockstep functionality. 

While the master core carries out logical processing, the checker core also processes the inputs 

of the master core. After both cores have completed processing, a logic comparator compares 

the results from both cores to verify consistency. To prevent common cause failures, there is a 

delay of two clock cycles in the input to the checker core. 

 

Figure 3.1-1 TC3xx Core Comparator 

The safety mechanisms of the ARM Cortex-R52/R52+ depend on the specific 

implementation by the chip manufacturer, and you can refer to the corresponding chip 

manual. 
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3.2 Memory Protection Unit (MPU) 

In addition to core safety, the ISO 26262 standard introduces the concept of Freedom 

from Interference (FFI), which requires that data exchanges between modules of different ASIL 

levels be isolated in memory space to prevent lower ASIL level modules from affecting higher 

ASIL level modules. Therefore, Memory Protection Unit (MPU) functionality is an essential 

safety mechanism for chips. 

The ARM Cortex R52/R52+ provides two programmable MPUs. The EL1 mode and EL2 

mode each correspond to their respective MPUs. Each MPU can cover a 4G address space. 

Each Memory Protection Region includes the following configuration elements: start address, 

end address, access permissions, and memory attributes. 

 

Figure  3.2-1 ARM Cortex R52/R52+ MPU Block Diagram 

The ARM Cortex R52/R52+ supports virtualization. Applications and the RTOS access the 

EL1 MPU, achieving isolation between applications and between applications and the RTOS. 

The virtual machine controls the EL2 MPU, achieving isolation between virtual machines. The 

ARM Cortex R52/R52+ MPU uses 2 bits to control access permissions, as shown in the Table 

2.5-1. 

The memory protection in the TC3xx chip is based on address-range-based memory 

protection, which implements protection for both the program area and the data area. The 

TriCore architecture's memory protection supports up to six protection sets, with a maximum 

of 18 data protection regions and up to 10 program protection regions. 

The TC3xx chip also supports bus-level (Bus MPU) memory protection functions. 

Compared to core-level memory protection, bus-level memory protection provides access 

restrictions for bus masters to the memory of bus slaves. 
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Porting Tip: For developers, memory protection features are generally implemented by the 

operating system, which configures memory protection through context switching. When 

porting an operating system, the porting of memory protection features should take into 

account the differences between the two chip architectures. 
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CHAPTER 4 SOFTWARE DEVELOPMENT PORTING. 

4.1 Toolchain. 

Embedded software development and runtime environments are typically located on 

different platforms. The development environment is generally deployed on Windows/Linux 

computers, while the runtime environment is deployed on the target chip. The compilation and 

building of runtime environment programs are achieved through a cross-compilation 

environment. The toolchain for embedded development environments usually includes a 

compiler, assembler, linker, debugger, etc. With the development of toolchains, editing 

software, compilation software, assembly software, linking software, debugging software, and 

functional libraries have all been integrated into one environment, known as the Integrated 

Development Environment (IDE). 

The ARM platform toolchain includes Arm Development Studio and Green Hills MULTI 

Integrated Development Environment. The development environment for the TriCore 

architecture mainly includes Tasking, HighTec, and debuggers such as Infineon's miniwiggler or 

professional debuggers like Lautebach, ISYSTEM, etc. 

For developers, when porting software from the TriCore platform to the ARM platform, it 

is necessary to consider the differences in various compilation environments. The analysis 

should mainly be conducted from the following aspects: 

• Assembly Code 

Typically, for performance reasons, the startup code and exception handling routines of a 

program are written in assembly language. When porting, it is necessary to consider the 

differences in assembly instructions across platforms, as referenced in section on 2.2 Instruction 

Sets. Integrated development environments usually provide examples for different platforms, 

and you can replace the startup code and exception handling routines for the porting platform 

with the corresponding routines for the target platform. 

• Data Types 

Different compilers support different data types for different platforms. For specifics, refer 

to the data type definitions of the compilers, which can be found in the section on Data Type. 

• Compilation and Linking Options 

During the porting process, it is important to consider the different compiler options. This 

includes the different standards of the C language supported by the compiler (such as 

C90/C99), support for different ANSI standards, and optimization options for compilation or 
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linking. Different compilation and linking options can affect the execution of the generated 

executable files. For the Arm Compiler, the settings for key compilation options such as `march` 

are shown in the following table: 

Table 4.1-1: Key Compilation Options for Arm Compiler 

Serial 

Number 
Compilation Option Compilation Option Value 

0 -march armv8-r 

1 -mcpu cortex-r52 

2 -mfpu neon-fp-armv8 (if neon is present) 

3 -mfloat-abi hard 

 

• Linker Scripts 

During the compiler's linking process, linker scripts are used to allocate the program to 

different address spaces, such as RAM, FLASH, stack areas, etc. The formats of linker scripts 

vary among different compilers. Generally, integrated development environments provide 

users with linker script templates for different platforms. During the porting process, users need 

to replace the code partitioning in the linker script with the corresponding partitions for the 

target platform. 
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4.2 Development Toolchain 

When a chip is powered on, it is necessary to initialize the internal registers and other 

components of the chip to establish the necessary runtime environment before executing the 

user-developed applications. Once the chip initialization is complete, the application can be 

executed. 

The startup process of the ARM Cortex-R52/R52+ begins at the reset vector, typically 

starting in EL2 mode and executing the Reset Handler of the EL2 mode interrupt vector table. If 

virtualization is not used, the Reset Handler in EL2 mode can set up the interrupt vector table 

for EL1 mode and jump to the Reset Handler of EL1 mode. For more details, you can refer to 

the section on Exceptions and Interrupts in 2.4 Exceptions and Interrupts. 

In the Reset Handler, the following initialization processes are typically carried out: 

• Configure the caching mechanism to enable or disable data cache and instruction cache 

functions. 

• Initialize CPU core registers. 

• Initialize the stack pointer. 

• Initialize modules such as the MPU (Memory Protection Unit). 

• Initialize global variables in the .bss and .data sections. 

• Initialize peripheral modules like clocks. 

• Proceed to the entry point of the user application, such as the main function. 

The ARM Cortex-R52/R52+ supports multiple Clusters (clusters of cores). A Cluster is a 

collection of related processor cores. There are typically two methods for synchronizing cores 

within the same Cluster during startup: 

Method 1： 

The hardware boots the primary core after reset, while all other secondary cores are held in 

reset by the hardware. The primary core completes the boot process and then brings the 

secondary cores out of reset. 

Method 2： 

All cores in the Cluster exit reset, and the secondary cores are paused by software, waiting 

for the primary core to signal them to continue running. 
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As shown in the following figure： 

 

Figure  4.2-1 ARM Cortex R52/R52+ Cluster Boot Process. 

Porting Tip: During the porting process, developers should account for differences in the 

boot process between various architectures. Generally, integrated development environments 

provide users with boot code examples for different platforms. In most cases, most 

configurations do not require changes by the user; simply replace them with the target 

platform's boot code. However, some special modules may need to be configured, such as the 

MPU module, which needs to be adapted according to the original requirements. The values 

for stack pointers need to be configured based on the linkage script, and the initialization of 

global variables needs to be configured according to the partitions in the linkage script. 
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4.3 Exceptions and Interrupt Handling. 

For information on interrupts and exceptions in the ARM Cortex-R52/R52+, please refer to 

section on 2.4 Exceptions and Interrupts. 

In the ARM Cortex-R52/R52+, interrupts and exceptions share a single interrupt vector 

table. The following mainly introduces the process of handling exceptions: 

1、The processor state is automatically saved to the SPSR register and the current 

processor state is updated. If in EL1 mode, the link register (LR) is modified for subsequent 

return from the interrupt. If in EL2 mode, the register ELR will be used. 

2、Execution begins from the corresponding entry in the interrupt vector table. This entry 

is a jump instruction that branches to the top-level handler. 

3、The context is saved, and then the second-level exception handler is called. 

4、The second-level exception handler typically executes in a C language environment. 

After execution, it returns to the top-level handler. 

5、The top-level handler restores the context and then returns to the address saved in the 

link register (LR). 

 

Figure  4.3-1 ARM Cortex R52/R52+ Exception Handling Process. 

Porting Tip: For developers, it is necessary to compare the differences in the handling of 

exceptions and interrupts between the two architectures. Due to these differences, the 

exception and interrupt handling processes of the two architectures are not reusable. 

Generally, integrated development environments provide users with boot code examples for 

different platforms. In these examples, they usually include the processes for exceptions and 

interrupts, as well as the default interrupt vector table. 
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4.4 Peripheral Access 

The peripherals of the ARM Cortex-R52/R52+ are dependent on the implementation 

provided by different chip manufacturers. Typically, these manufacturers supply peripheral 

drivers for user implementation. During the porting process, development should be based on 

the peripheral drivers provided by the chip manufacturer. 
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4.5 Memory Protection Unit 

The ARM Cortex R52/R52+ provides two programmable MPUs (Memory Protection Units). 

The EL1 mode and EL2 mode each correspond to their respective MPUs. Each MPU can cover a 

4G address space. Each memory protection region includes the following configuration 

elements: start address, end address, access permissions, and memory attributes. 

An example of the MPU initialization process for the ARM Cortex R52/R52+ platform is as 

follows: 

 

Figure  4.5-1 ARM Cortex-R52/R52+ MPU Configuration Example 

Porting Tip 1: The MPU helps ensure memory isolation between subsystems, enhancing 

the system's reliability and security. For developers, it is necessary to compare the differences 

in MPU enabling and configuration between the two architectures. 

Porting Tip 2: The export of memory addresses is related to the linker script, and the 

syntax of linker scripts may vary between different toolchains. For developers, it is necessary to 

replace the original linker script according to the toolchain being used. 
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4.6 Performance Optimization Suggestions 

Performance optimization on the ARM Cortex-R52/R52+ platform primarily focuses on 

three aspects: Cache, Tightly Coupled Memory (TCM), and fast interrupts (FIQ). Additionally, 

utilizing the compilation optimization options provided by the ARM platform toolchain can 

effectively improve software performance. 

    • Cache 

The ARM Cortex R52/R52+ platform has a multi-level memory system. Each core has its 

own independent data cache and instruction cache. Utilizing these caches can significantly 

reduce the execution cycle for software accessing data and instructions. 

An example of enabling Cache on the ARM Cortex R52/R52+ platform is as follows: 

 

    Figure 4.6-1 ARM Cortex-R52/R52+ Cache Enablement Example 

    • TCM 

TCM is characterized by its close coupling with the core, which means that accessing TCM 

is typically faster than accessing RAM. TCM is often used to store critical code and data that 

require high-speed access or have low latency requirements. 

ARM Cortex R52/R52+ has three TCMs: ATCM, BTCM and CTCM. All of them can be used 

to store instructions or data. TCM is controlled through CP15 registers, which manage the 

enablement status and size parameters of TCM. 

The size of each TCM on the ARM Cortex R52/R52+ platform can be independently 

configured as 0KB, 8KB, 16KB, 32KB, 64KB, 128KB, 256KB, 512KB, or 1MB. TCM is an optional 

implementation in the processor, with 0KB indicating that TCM is not implemented on that 

processor. 

    • FIQ 

FIQ is a special type of interrupt mechanism in the ARM Cortex R52/R52+ platform. The 

FIQ on the ARM Cortex R52/R52+ platform has a high priority, enabling it to quickly respond 

to and handle urgent interrupt events. Its main features include: 
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1、Rapid Response: FIQ can preempt processor resources more swiftly than IRQ, thus 

reducing interrupt latency. 

2、Dedicated Registers: The ARM Cortex R52/R52+ platform provides a set of dedicated 

registers for FIQ (refer to section 2.3 General-Purpose Registers), minimizing the overhead of 

saving and restoring context during interrupt handling, thereby shortening response time. 

During the migration process, if critical events like emergency data from sensors or system 

failures occur, FIQ enables rapid response, ensuring system stability and reliability. 

• Compilation Optimization Options 

Compilation optimization options are settings used during the compilation of programs to 

improve code performance, reduce code size, or enhance other characteristics. 

On the ARM Cortex R52/R52+ platform, taking the Arm Compiler as an example, common 

compilation optimization options include: 

1、Code Inlining: Embeds the code of small functions directly into the place where they 

are called, reducing the overhead of function calls. For instance, if a frequently called and short 

function is optimized with inlining, it can significantly improve execution efficiency. 

2、Loop Optimization: Includes loop unrolling, which duplicates the loop body multiple 

times to reduce the overhead of loop control. For example, in simple computation-intensive 

loops, loop unrolling can fully utilize the processor's pipeline to enhance performance. 

3、Constant Propagation: Directly replaces expressions that use known constant values 

with those constants in the code. If there is a constant that is used multiple times in the code, 

constant propagation can reduce redundant calculations. 

Compilation optimization options are related to the toolchain being used. During 

migration, corresponding compilation optimization options can be set according to the manual 

of the toolchain to improve program performance. 
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CHAPTER 5 SUMMARY 

This document primarily explores the differences between the Tricore and ARM Cortex-

R52/R52+ platforms, focusing on architecture, functional safety design, and software 

development porting. It provides porting recommendations for developers during the 

migration process.  

Additionally, the software development porting section includes performance optimization 

suggestions for developers' reference.  
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CHAPTER 6 APPENDIX 

6.1 References 

ID References Version Date 

1 
Arm Cortex-R52 Processor Technical Reference 

Manual 
Revision: r1p4 20 July 2021 

2 
Arm Cortex-R52+ Processor Technical Reference 

Manual 
Revision: r0p1 25 August 2022 

3 Arm Architecture Reference Manual Supplement: 

Armv8, for the Armv8-R AArch32 architecture 

profile 

Updated EAC 

release 

06 November 

2020 

4 Arm Architecture Reference Manual for A-profile 

architecture 

0487K.a 20 March 2024 

5 Infineon-AURIX_TC3xx_UserManual V02_00 / 

6 Infineon-AURIX_TC3xx_Architecture_UserManual V01_00 / 

 

6.2 Terms and Acronyms 

Term/Acronym  Description 

CPU Central Processing Unit 

MCU Microcontroller Uni 

MMU Memory Management Unit 

IDE Integrated Development Environment 

RISC Reduced Instruction Set Computer 

ISA Instruction Set Architecture 

RTOS Real Time Operating System 

DSP Digital Signal Processing 

DMA Direct Memory Access 
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MPU Memory Protection Unit 

ASIL Automotive Safety Integrity Level 

IDE Integrated Development Environment  

CSA Context Save Areas 
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